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Motivation
In both processes of detection and PE of gravitational wave events, a huge number of theoretical
waveform templates are required for matched filtering. However, due to the unavoidable strong gravity
regime for the mergers of two compact objects, it is notoriously difficult to calculate the CBC dynamics
and the associated gravitational waveforms. To accelerate the generation of theoretical waveforms for
practical applications, We aim to construct some deep learning neural network [1, 2] to generate the
CBC gravitational waveforms of high accuracy by giving the source parameters.

Data Set

• Here the mass ratio is denoted by q ≡
m2/m1 with 1 ≤ q ≤ 10. The corre-
sponding percentages of (training, vali-
dation, test) is (70%, 10%, 20%) for LMR
(low-mass-ratio) data (q ≤ 5), and is
(19%, 1%, 80%) for HMR (high-mass-
ratio) data (q > 5).

• Note that the fraction of the HMR tem-
plates is only about 2.46% of the total
training data set, including both training
and validation data.

Figure 1: Tomography

Data Preparation
A strain is the linear combination of the two po-
larization modes :

h(t) = h+(t) + ih×(t) . (1)

Instantaneous phase :

θ(t) = tan−1
(h×(t)
h+(t)

)
(2)

Figure 2: Decomposition of a time series strain

Normalization
The way of normalization we adopt is as follows:

ω̂(t) =
ω(t)− µω

σω
, Â(t) =

A(t)− µA
σA

(3)

where the normalization parameters (µω, σω) are
respectively mean and variance evaluated from the
8192 segments of ω(t), and similarly for (µA, σA).

Accuracy
Overlap between two waveforms :

〈h1|h2〉 = 4 <
∫ ∞
0

h̃1(f)h̃2(f)
∗

Sn(f)
df (4)

where h̃i(f) is the Fourier transform of hi(t) and
Sn(f) is the power spectral density (PSD) of
detector’s noise.

Faithfulness [3] is adopted to compare hML(t) gen-
erated by our waveform model and the standard
EOB waveform hEOB(t),

FF = max
t0,φ0

[
〈hEOB|hML〉√

〈hEOB|hEOB〉〈hML|hML〉

]
(5)

where t0 and φ0 are respectively the initial time
and inital phase of hEOB(t)

Network Structure
• latent vector/space plays the role of the reduced order storing compressed representation.

• Reconstruction Loss compares templated waveform and generated waveform by our model.

• Latent Loss compares the outputs Encoder1 and Encoder2.

• For 2C2E1D model, strain is normalized frequency and amplitude, label is masses of two black
hole, key is normalized mean and variance (µω, σω, µA, σA), and target is un-normalized strain.

• After the training, we can remove the waveform input and Encoder2. Then Decoder becomes a
machine of generating the waveforms with the given source and Encoder1.

Figure 3: Basic CAE structure Figure 4: Schematic structure of the 2c2E1D
model

Result

Figure 5: Average FF for different models

Figure 6: CDF for 2C2E1D FFs

The 2C2E1D model is the best with more
than 97% for both the low-mass-ratio and
high-mass-ratio waveform generation. This
demonstrates the viability of our best wave-
form model to be implemented in the practical
gravitational wave data analysis and parame-
ter estimation (PE). Especially, the generation
time (about 1 millisecond) of a single wave-
form is 10 to 100 times faster than the tra-
ditional EOBNR method, and the impressive
accuracy for HMR waveform generations is en-
couraging because fraction of the HMR wave-
forms in the training and validation data set is
less than 3%.
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