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Abstract

For searches of gravitational waves from compact binary coalescence, usually matched filtering with template bank 1s used. For faster and more accurate searches, we introduce a new
algorithm for template bank construction based on a previous study!!! using the geometry of parameter space. In our work, we use a technique for matrix computation and consider the
distribution of template points. Finally, we confirmed that our new method 1s more accurate and computationally fast. This algorithm can also respond to instrumental updates rapidly.

Introduction - Template bank

In matched filtering method in GW searches, we evaluate
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Because we don’t know the true parameter value a priori, we need to prepare theoretical
waveforms for various parameter values - called “template bank™.

In order to place template points properly, we usually evaluate “match” between two
waveforms (h|hs). Given a threshold for match (called minimal match (MM)), we com-
pute template points to satisfy the threshold.
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Background - Geometry of parameter space

Some studies suggest placement algorithms to use the geometry of parameter space intro-
ducing coordinates for X - called geometric placement.

Such an algorithm becomes simpler by introducing new coordinates for parameters'?).
The phase function U(f; \) of a waveform would be written as linear combination of
orthonormal bases {1, (f)} and coefficients {c"},

U(f;iA) =D " (N)dalf) (2)
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Because the coordinate for {c"} becomes Euclidean from orthonormality of bases, the
computation of template points on the new coordinate 1s simple. Previous studies show
the efficiency of this method!?.

Even in the case that we don’t know the analytic formula of W( f; A), we can identify
{c*} and {1, } using singular value decomposition (SVD) as follows!!.

1. Generate a lot of random samples for parameters, {\; }.
2. Compute discrete phase matrix, V;; = U(f;; ;).
3. Execute SVD for the phase matrix. = search of orthonormal coordinates and bases

Then we can construct template bank on the new Euclid coordinate for {c*}.

Improvement - Less computation and More accuracy

1. Fast computation of SVD

In previous method, we needed to execute SVD for a huge size matrix. It dominates
computational time in template construction.

To reduce computational cost in SVD, we introduced an approximation technique for
low-rank matrix which is proposed in computer science originally*!. In this method, we
approximate a matrix A € RY*¥ by A’ € RV (R <« M) extracting principal compo-
nents from original matrix.

Performance test

We tested this method for the matrix W;; which has 10000 x 16384 components. In my
laptop, computational time of SVD was

computational time of SVD

w/0 approximation 10 hr.
w/ approximation 6 min.

Table 1: Performance of matrix approximation

with relative error < 107, Approximate SVD needed only O(10%) principal components
in the original matrix. We confirmed that matrix approximation works effectively to re-
duce computational cost in template construction.

2. Flatten the distribution of parameter points

In previous method, we needed to use a lot of random samples, and the accuracy of tem-
plate bank 1s affected by the distribution of random samples.

To improve accuracy, we tried to flatten the distribution of random samples in the param-
eter space NOT for A BUT for c¢. We tested threes types of distribution of random samples
for the mass and spin of binary objects,

1. Uniform distribution for (my, ms, x1, X2)

2. Uniform distribution for (79, 73, X1, X2) - - - new parametrization for mass

3. Uniform distribution for (79, 73, T35, Xeff) - - - new parametrization for mass and spin

We constructed template banks from each type of random samples.

Results of injection test

We checked the accuracy of template bank by preparing 2 x 10! simulated signals and
computing the match between a signal and a nearest template point.

common for signals and templates
waveform model IMRPhenomD

mass range m1, my € [10,100] My
spin range X1, X2 € [—0.9,0.9] (aligned spin)
Setting for template bank
number of random samples 10*
minimal match 0.97

Setting for simulated signals
signal parameters chosen uniformly random

Table 2: Setting of simulated signals and template bank
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template from {m1,i'ng,}{1,xlg{ samples ——
template from (T, T3,X1.X2) Samples
template from (T, T3,Tag,Xes1) SAMples
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Figure 1: Fraction of signals against to match with templates

We found that the template banks from newly-parametrized samples had better accuracy
than the original. We concluded that 1t’s possible to achieve good accuracy even from
small number of samples by choosing proper distribution.

Conclusion

 We worked on developing new algorithm to construct template bank for gravitational-
wave searches.

* We achieved more accurate results with low computational cost.

e Our new method 1s also useful in reflecting instrumental updates to analysis rapidly
through S,,(f). It may be important if we need to consider the time variation of detector
sensitivity.

* We are checking the performance of new algorithm in lower mass regions now.
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