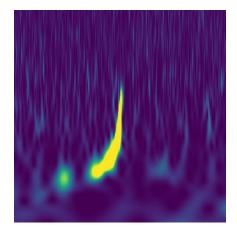
On Improving Glitch Classification Performance for Gravitational Wave Detection using Generative Adversarial Networks

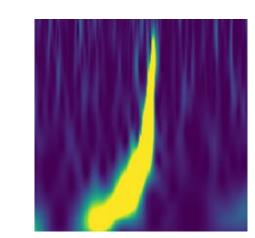
Alex P. Leung

Faculty of Information Technology Macau University of Science and Technology Macau

The 8th KAGRA International Workshop July 7 – 9, 2021

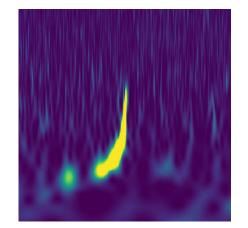
Other Contributors

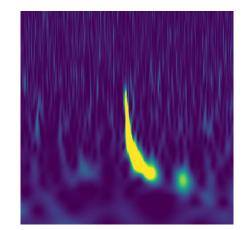

• C. Y. Hui (CNU, Korea)

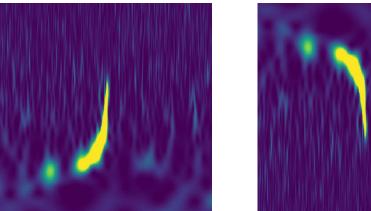

• Jianqi Yan (MUST, Macau)

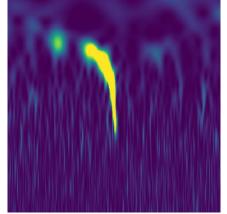
CHALLENGES

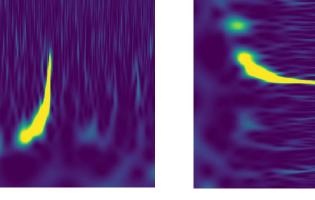
- Traditional data augmentation methods on images such as center cropping, random cropping, flipping and rotations cannot be used for spectrogram classification.
- There are different numbers of spectrograms for different glitch classes in the Gravity Spy dataset leading to the imbalanced data problem.
- Traditionally Generative Adversarial Networks (GANs) are used to generate low-resolution images with resolutions like 128 x 128.


CHALLENGES




Center Cropping


Traditional Data Augmentation Methods

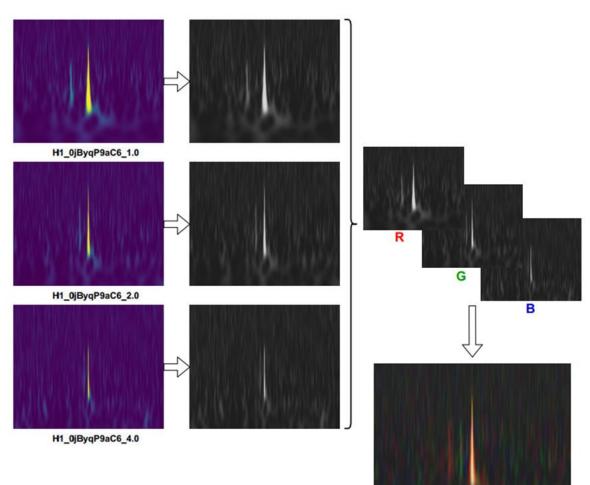


Flip Spectrogram Horizontally

Flip Spectrogram Vertically

Rotation

CHALLENGES

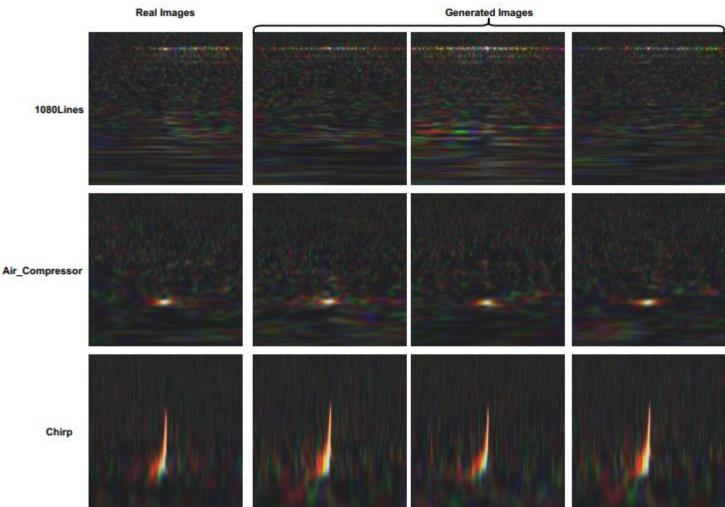

Imbalanced Data Problem

Class	Number	Class	Number
1080Lines	1312	No_glitch	724
1400ripples	928	Paired_doves	108
Air_compressor	232	Power_line	1812
Blip	7476	Repeating_blips	1140
Chirp	264	Scattered_light	1836
Extremely_loud	1816	Scratchy	1416
Helix	1116	Tomte	464
Koi_fish	3320	Violin_mode	1888
Light_modulation	2292	Wandering_line	176
Low_frequency_burst	2628	Whistle	1220
Low_frequency_lines	1812	None_of_the_above	352

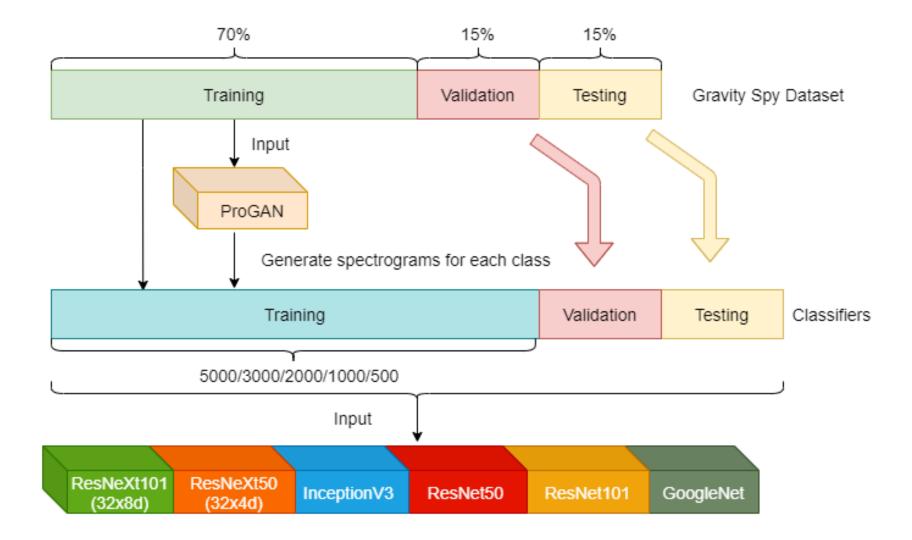
OUR CONTRIBUTIONS

- We have achieved the top-1 accuracy of **99.21**% for glitch classification on the Gravity Spy dataset.
- We also obtain the top-3 accuracy of **100%** on the Gravity Spy dataset.
- With the trained classifier, the spectrograms of the unidentified sources can further be analyzed and classified with our method.
- High-resolution spectrograms for each glitch class are generated to tackle the imbalanced data problem.

DATA PREPROCESSING


This method is introduced by George et al. (George et al. 2017)

Merged View RGB Spectrogram


THE PROPOSED METHOD

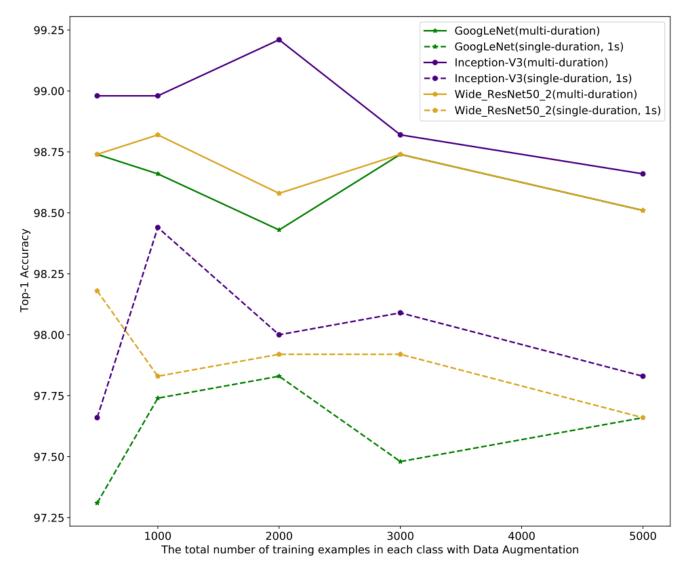
- Our approach avoids overfitting for deep learning with a dataset large enough for generalization using data augmentation.
- A number of different data augmentation methods have been considered and experimented.
- We found that **ProGAN** which is recently proposed to generate high-resolution images works well for our problem with glitches from gravitational wave detection.

GENERATED SPECTROGRAMS

IMPLEMENTATION METHODS

EXPERIMENTAL RESULTS

Table 5. Top-1 accuracy of glitch classification on the Version 1.0 test set.

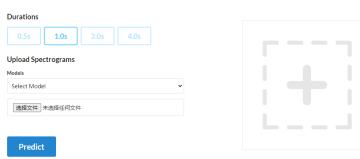

	ResNet50 (224×224)	ResNet101 (224×224)	GoogLeNet (224×224)	Inception-V3 (299×299)
Gravity Spy dataset (v1.0)	98.19%	98.58%	99.06%	98.35%
Gravity Spy dataset (pre-trained)	98.90%	98.66%	98.90%	98.89%
$N_{aug} = 500$	98.74%	98.82%	98.74%	98.98%
$N_{aug} = 1000$	98.51%	98.43%	98.66%	98.98%
$N_{aug} = 2000$	98.58%	98.19%	98.43%	99.21%
$N_{aug} = 3000$	98.43%	98.35%	98.74%	98.82%
$N_{aug} = 5000$	98.35%	98.43%	98.51%	98.66%

EXPERIMENTAL RESULTS

Table 6. Top-k accuracy of each network architecture in our experiments (Top). Previous results with only transfer learning of each network architecture in (George et al. 2018) (Bottom).

	Top-1	Top-2	Top-3	Top-4	Top-5
ResNet50 (500)	98.74%	99.61%	99.84%	99.92%	100%
ResNet101 (500)	98.82%	99.84%	99.84%	99.84%	99.92%
GoogLeNet (3000)	98.74%	99.84%	100%	100%	100%
Inception-V3 (2000)	99.21 %	99.84 %	100%	100%	100%
VGG16 (1000)	98.82%	99.92%	100%	100%	100%
VGG19 (1000)	98.35%	99.84 %	100%	100%	100%
Wide_ResNet50_2 (1000)	98.82%	99.84%	99.92%	100%	100%
ResNext50_32x4d (1000)	98.58%	99.69%	99.92%	100%	100%
ResNext101_32x8d (500)	98.66%	99.61%	99.84%	100%	100%
Inception-V3	98.84%	99.71%	99.88%	99.94%	100%
ResNet50	98.84%	99.71%	99.83%	99.94%	100%
VGG16	98.15%	99.36%	99.71%	99.83%	99.88%
VGG19	98.21%	99.31%	99.60%	99.71%	99.71%

EXPERIMENTAL RESULTS


	1080Lines -	49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1400Ripples -	0	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Air_Compressor-	0	0	8	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		- 250
	Blip -	0	0	0	280	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Chirp -	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Extremely_Loud -	0	0	0	0	0	68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Helix -	0	0	0	0	0	0	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0		- 200
_	Koi_Fish-	0	0	0	0	0	0	0	124	0	0	0	0	0	0	0	0	0	0	0	0	0		
uth	Light_Modulation -	0	0	0	0	0	0	0	0	86	0	0	0	0	0	0	0	0	0	0	0	0		
abel (ground truth) ح	.ow_Frequency_Burst-	0	0	0	0	0	0	0	0	1	94	1	0	0	0	0	1	1	0	0	0	0		- 150
UNO L	_ow_Frequency_Lines-	0	0	0	0	0	0	0	0	0	0	67	1	0	0	0	0	0	0	0	0	0		
(gr	No_Glitch -	0	0	0	0	0	0	0	0	0	0	0	27	0	0	0	0	0	0	0	0	0		
abel	Paired_Doves-	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0		
<u> </u>	Power_Line -	0	0	0	0	0	0	0	0	0	0	0	0	0	68	0	0	0	0	0	0	0		- 100
	Repeating_Blips -	0	0	0	2	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0	0		
	Scattered_Light -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	69	0	0	0	0	0		
	Scratchy -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	53	0	0	0	0		
	Tomte-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0		- 50
	Violin_Mode -	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	70	0	0		
	Wandering_Line -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0		
	Whistle -	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45		- 0
		1080Lines	1400Ripples	Air_Compressor	Blip	Chirp	Extremely_Loud	Helix	Koi_Fish-	Light_Modulation -	Frequency_Burst-	Frequency_Lines	No_Glitch	Paired_Doves	Power_Line.	Repeating_Blips.	Scattered_Light	Scratchy -	Tomte-	Violin_Mode	Wandering_Line-	Whistle -		~

We achieved perfect recall and precision on 9 classes on the Gravity Spy dataset.

FUTURE WORK

99.21% Accuracy of Glitch Classification

Have a Try 🗦

Generate Spectrograms

Select Glitch		
Number of Genera	ted Spectrograms	

~

Github

Generate

About Copyright Contact Us ©2020-2021, Jiangi Yan

THANK YOU VERY MUCH