
Applications of Heun Functions 
and Regge Theory in 

Gravitational Wave Astrophysics
Aditya Tamar (Early Career Independent Researcher) 

Email: adityatamar@gmail.com 
8th July, 2021 

Talk for the 8th KAGRA International Workshop, 2021 
Korea Astronomy and Space Science Institute, Republic of Korea

1

mailto:adityatamar@gmail.com


Motivations
• Instrumentation, Theoretical and Computational advances in 

black hole astrophysics driven by the work of LIGO, EHT and 
many others 

• Mathematical Objects Astrophysical Observations leading to 
“Mathematical Astrophysics” 

• Roots in Einstein’s use of differential geometry to understand 
spacetime 

• Several recent successes: 2-spinor formalism of Newman-
Penrose1, BMS Group2, Christodolou’s memory effect3 and so on 
and so forth.

↔
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Foundations of Formalism I: 
The Teukolsky Equation

• The Teukolsky (Master) Equation4, introduced by Saul 
Teukolsky in 1973, governs the behaviour of all spin weighted 
fields in Kerr spacetime. 

• Derived using the Newman-Penrose formalism, a suitable tetrad 
and some algebraic manipulations leading to a master equation 
for spacetime variables. 

• The spin weights describe scalar, neutrino and 
electromagnetic fields whereas  describes the metric 
perturbations which leads to the emission of gravitational wave 
signals.

|s| = 0,1/2,1
|s| = 2
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The Teukolsky Master 
Equation

• The Master equation in operator form can be written as: 

 

where,  is the Weyl Scalar for each spin weight ,  is the Teukolsky 
differential operator in Boyer-Lindquist coordinates  is given by: 

 

 and  is the source term built from the energy-momentum tensor. 

• For black hole spin , it reduces to the Bardeen-Press equation that 
governs perturbations of Schwarzschild black hole.  
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Mode Ansatz and Decoupling

• The Master Equation can be separated by applying a mode 
separability ansatz that isolates contributions from isometries of 
Kerr arising from the temporal and polar Killing vectors:  
 
                         sψ(t, r, θ, ϕ) = e−iωteimϕS(θ)R(r)
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Teukolsky Radial and 
Angular Equations

• For the source free case , by applying the mode ansatz we get the Teukolsky Radial Equation 
(TRE): 

 
 

 

 
and the Teukolsky Angular Equation (TAE):  

     

where, ,   and  is the angular 
eigenvalue. 

• Note that the equations are coupled in terms of  and . 
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Teukolsky Radial and Angular 
Equations

• The TRE is used to calculate a large number of astrophysical 
observables such as fluxes from particles orbiting the black 
hole5, quasinormal modes6, behaviour of magnetic fields around 
current loops7 and so on.  

• The TAE corresponds to a class of functions called “spin 
weighted spheroidal harmonics”8. These are generalisations of 
the well known spin weighted spherical harmonics that are used 
in everything from the hydrogen atom to numerical relativity.
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Foundations of Formalism II. 
Heun Equations

• The general Heun equation is the most general linear, second order differential 
equation with four regular singularities, including infinity9.  

• By a confluence/combining of two of its regular singularities into one we obtain the 
confluent Heun equation for the confluent Heun function : 

 

• The confluent Heun equation has two regular singularities ( ) and one irregular 
singularity at infinity.  

• By repeating the confluence procedure, we can obtain bi-confluent and triconfluent 
Heun functions as well. 

• Wide applications in everything from quantum computing, atomic physics and so on9
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Teukolsky Equations and 
Confluent Heun equations

• By transformation of the independent variable and a suitable 
mapping of parameters10, both TRE and TAE for Kerr can be 
mapped to confluent Heun equations (for Kerr de-Sitter we get 
the Heun equation11). 

• Therefore, both TRE and TAE represent the same 
mathematical object. 

• Thus the problem of solving the TRE and TAE boils down to 
obtaining solutions of confluent Heun functions
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Existing Techniques for 
Computation

• Leaver’s method12: using coulomb functions leading to a 
continued fraction to be solved by root finding 

• Mano-Suzuki-Takesugi method13: matched asymptotic 
expansion based on Gauss hypergeometric and coulomb 
spheroidal functions 

• What can Heun’s function accomplish?
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The Confluent Heun form of the 
Radial and Angular Equations 
(joint work with Pierre-Louis 

Giscard)14
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Computation using Heun 
Functions

• Turns out, quite a bit! 

• In work with Pierre-Louis Giscard, using his technique of path sums, we 
were able to map the heun class of equations to an Volterra integral of 
second kind 

• This integral contains as a solution the Neumann series which is an 
unconditionally convergent series. 

• Moreover, the technique of path sums works for any system of coupled 
linear differential equations with variable coefficients 

• This also resolved a long standing problem in mathematical literature of 
finding an integral representation (not a transform) of the Heun class of 
functions
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Path Sum Method for Computation
Heun Equation

Matrix Form with variable coefficients as the elements

First Order Differential Equation for the Matrix 

Solution as a Path Ordered Exponential

Evaluate using Graph Theory Techniques (Path-Sums)

Unconditionally Convergent Solution of a Neumann Series 

Volterra Integral of Second Kind

Numerically Efficient Implementation



Computation using Heun 
Functions

• For the TRE and TAE, which are confluent Heun equations this implied a solution 
that is uniformly convergent from black hole horizon to spatial infinity 

• Serious alternative to the well used Mano-Suzuki-Takesugi formulation 

• Some features of the formulation: 

1. The technique is numerically very efficient  

2. It did not require introduction of any other special functions or an auxiliary 
parameter 

3. It has no restriction on the parameters of the TRE/TAE (real or complex, 
high or low black hole spin, all spin fields etc) 

4. It treats TRE and TAE on the same mathematical footing
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Results

Convergence near z = 0 is slowed down due to [one of the 
integrans] being singular at z = 0 just as [the confluent Heun 

equation] is. Still, the integral series is convergent over the entire 
domain , a crucial property for perturbative black hole 

theory that is unique to the present approach. 
z ∈ [0,∞]

A comparative study for N sample points between 
Mathematica’s HeunG function and of our 

implementation in Mathematica (presented at 
DoD,2021) 



Current and Future Work
• Reducing computational complexities from Green’s function of the TRE and 

TAE wherein the MST method leads to significant complications in 
quasinormal modes and late time decays15 

• Numerically well behaved implementation of spin weighted spheroidal 
harmonics for both, real and complex frequency parameter including their 
series summations (applications in wave scattering of Kerr Black Holes) 

• Circumvent difficulties from long range nature of the Teukolsky potential 
(avoiding the Sasaki Nakamura transform16). 

• Conserved currents using integral symmetries of confluent Heun functions 

• Mathematical Physics (Behaviour of confluent Heun functions near Stokes 
lines, asymptotic analysis etc.)
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Complex Angular Momentum 
and Regge Theory in Black 

Hole Physics:

Quasinormal Modes of Kerr using 
Regge trajectories  

(joint work with Antoine Folacci)17
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Complex Angular Momentum 
Techniques and Black Holes

• Goebel19 in 1972 suggested that black hole normal could be interpreted as gravitational 
waves spiralling near the unstable photon orbit at  of Schwarzschild and 
radiating energy. 

• Chandrashekhar and Ferrari20 used CAM techniques to study resonant behaviour of 
stars, by exploiting the theory of Regge Poles. 

• Rigorous theory worked out by Folacci and collaborators over the past 2 decades for 
Schwarzschild Black holes, mainly in scattering of waves and correspondence between 
geodesics and resonant frequencies. 

• Crudely, it is a different viewpoint of studying resonance excitations of a black hole 
wherein the correspondence to geodesics is much more transparent than the 
conventional quasinormal mode picture. 

• Our work was the first application to Kerr for non-zero spin weight fields in full 
generality.

r = 3M
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Foundations of Formalism: Complex 
Angular Momentum Techniques

• First used by Watson to study diffraction of radio waves around 
the earth. 

• Explosion in applications of particle physics due to the work of 
T. Regge. It helped classify stable and decaying particles. 

• A notion of a “surface wave” that allows study of diffraction 
effects in scattering. Andersson interpreted these waves to be 
travelling close to the unstable photon orbit of Schwarzschild18.
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Model Implementation for 
Schwarzschild Black Holes 

• Begin with the equation governing the perturbations of the Black Holes 
 

                                                   

• Impose the physical boundary conditions of being purely ingoing at black hole horizon and 
purely outgoing at infinity 
 
                                                   ,  
 
                                      ,  
 
where  are complex. 

• The Scattering (S)- Matrix Elements are given by:  
 

                                                

[ d2

dr2
*

+ ω2 − Vl(r)]ϕωl = 0

ϕωl(r) ∼r*→−∞ e−iωr*

ϕωl(r) ∼r*→∞ A−
l (ω)e−iωr* + A+

l (ω)eiωr*

Al(ω)

Sl(ω) = ei(l+1)π A+
l (ω)

A−
l (ω)
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Model Implementation for 
Schwarzschild Black Holes 

• The S-matrix elements are substituted into the the scattering 
amplitudes  and  which are given by: 
 
                            
where,  
 

  

 
having,  as the operator that has Legendre polynomials 

 as its eigenfunctions and  correspond to scattering 
matrix elements corresponding to even and odd parity modes

f +(ω, x) f −(ω, x)

f ±(ω, x) = ℒ±f̃ ±(ω, x)

f̃ ±(ω, x) =
1

2iω

∞

∑
l=2

(2l + 1)
(l − 1)l(l + 1)(l + 2) [ 1

2 (S(e)
l

± S(o)
l ) − (1 ± 1

2 )]Pl(x)

ℒ
Pl(x) S(e,o)

l



Model Implementation for 
Schwarzschild Black Holes 

• Analytically replace the discrete summation over angular momentum parameter 
l by a contour integral in the complex  plane (i.e “complex angular 
momentum” plane) by using the Sommerfeld-Watson transform: 
 

                              

which holds for a function  without any singularities on the real  axis.


• Analytically extend the Legendre polynomials  to a complex index  
using the formula:  
 
                          


• Extend the S-matrix elements to complex values as well 

λ = l + 1/2

∞

∑
l=2

(−1)lF(l) =
i
2 ∫C′ 

F(λ − 1/2)
cos(πλ)

F λ

Pl(x) Pλ−1/2

Pλ−1/2(x) =2 F1[1/2 − λ,1/2 + λ; 1; (1 − z)/2]



Model Implementation for 
Schwarzschild Black Holes 

• To collect contributions of Regge poles, deform the contour from  to : 

• Remove contributions arising from the two spurious poles introduced above.


• Deform the contour, and by using Cauchy’s theorem, collect the Regge pole 
contributions and discard the solutions of background integrals and quarter circles at 
infinity (valid in “high energy” approximation


• The resultant formula is a sum over Regge Poles lying in the first quadrant of the CAM 
plane involving the residues of the matrices of the S-matrix element at these poles

C′ C



Main Takeaway
• Apply the Sommerfeld-Watson transform to the scattering amplitude. This converts the 

summation over a real parameter  to an integral in the complex plane for 
parameter . 

• Deform the contour of integration to get singularities. These correspond to singularities 
of S-matrix in the CAM plane. These are known as Regge poles . Cauchy’s 
theorem can be used to collect contributions of Regge poles. 

• As  (which is now real) varies, Regge Poles trace out a path in the CAM plane called 
Regge trajectories. 

• Whenever the real part of the pole intersects with a half-integer, we have a resonance. 

• The Breit-Wigner formula gives us the real and complex frequencies which are our 
QNMs.  

• For reference see Decanini, Folacci, Jensen et. al.21

l
λ − 1/2

λn(ω)

ω
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Regge Theory for Kerr Black 
Holes

• In joint work with Antoine Folacci, we attempted to study the 
QNMs of Kerr spacetime using CAM techniques. 

• We focused on the Green’s function of the Teukolsky Equation.  

• Our main aim was to improve the correspondence between 
QNMs and geodesics, generalising existing studies of Regge 
Poles as well Green’s function of Kerr for non-zero spin 
weighted fields.
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Regge Theory for Kerr Black 
Holes

• Fundamental difference from the Schwarzschild case: We now 
have summation over two indices ( ) of our functions.  

• We only considered the Sommerfeld-Watson transform for the 
usual complex “angular momentum” (and still obtained highly 
accurate numerical results) 

• However a complete treatment requires studying the functions in 
several complex variables (scope for future work!)

l, m



Foundations of Formalism: Green’s 
Function of the Teukolsky Equation
• We study the retarded Green’s function  solution of the equation 

, (here: ) 

where,  

                                                                    

having, ,  being solutions of the TRE and TAE with suitable boundary conditions. The radial contribution is given by: 

,  

and the Wronskian  is given by:  

  

When evaluated at the suitable boundary conditions gives us: 

                                                                                                                  
 
where,  like for Schwarzschild is one of the coefficients obtained from specifying the asymptotic behaviour at the boundary conditions 

• All other notation is the same as the Teukolsky equation. 
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Application of the Regge 
Theory

• Follow the same prescription as the one discussed in the primer. 

• Obtained quasinormal modes as poles of the Wronskian, under 
the (well-behaved) assumption of  
 
                               

• This “high frequency” limit discards the contributions of the 
background integrals arising in the Regge theory.

Re(ωlmn) > > Im(ωlmn)
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Application of the Regge 
Theory

• The resultant expression of the Green’s function after applying Regge 
theory is as follows:  
 

  
 
where,  contains the residue contributions which are in turn 
obtained from asserting zeroes of the Wronskian and  are the 
Regge Poles. 

• Note: Recalling that the Radial and Angular Functions  are 
equivalently confluent Heun functions, this is the Green’s function for 
the confluent Heun functions!

sG
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+∞
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∫
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λnm(ω)−1/2,m(r>, ω)sSλnm(ω)−1/2,m(θ, aω)sS

*
λnm(ω)−1/2,m(θ′ , aω)

srnm(ω)
λnm(ω)

R(r), S(θ)



Results: Overview
• Recovered all qualitative features of QNMs of Kerr: 

1. splitting of “azimuthal degeneracy” in QNMs of Schwarzschild leading to a 
characteristic pattern of Kerr QNMs 

2. Reasonably asymptotic to algebraically special frequencies for near 
extremal cases 

3. For the astrophysically relevant , numerical accuracy ranging 
from  for low frequency and  for high frequency 
case. 

4. Valid for the highly relevant  fundamental mode as well 
for subdominant modes (thus suitable for multimode analysis and studying 
sub-dominant contributions, see work by Giesler22 et. al.)

|s| = 2
10−1 − 10−3 10−5 − 10−8

l = m = 2,n = 0
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Results: Sample Plot

Demonstrates the characteristic “splitting” of 
the QNMs as the spin increases (Gravitational 

analogue of the Zeeman effect)
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Results: Tabulation
Results for  m = 0,n = 0 Results for  m = 2,n = 0
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Future Avenues

• The precise mapping between QNMs and geodesics still remains 
unresolved. Need of new mathematical constructions to 
supplement the physical picture? 

• Classification scheme for QNMs? 

• Applications to Black Hole Imaging: Light Correlation 
Functions encoded in electric fields (see Chesler et. al.)23
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23. Chessler, et. al., Light echos and coherent autocorrelations in a black hole spacetime, Class. Quant. Grav., 2021



–Enrico Fermi

“When one does a theoretical calculation, there are two 
ways of doing it: either one should have a clear physical 

model in mind or a rigorous mathematical basis.” 
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Why not both?


