Search sensitivity for Gravitational Waves from Black Hole Capture Events

Michael Ebersold¹, Leigh Smith², Shubhanshu Tiwari¹, Daniel Williams², Maria Haney¹, Ik Siong Heng², Yeong-Bok Bae³, Gungwon Kang⁴

¹ University of Zurich
² University of Glasgow
³ National Institute for Mathematical Sciences, Daejeon
⁴ Chung-Ang University, Seoul

 8^{th} KAGRA International Workshop

July 8, 2021

・ロト ・ 日 ト ・ 日 ト ・ 日

Introduction

- Black Holes in dense stellar environments can undergo dynamical interactions that can lead to flyby encounters, highly eccentric orbits or direct captures.
- We study the direct capture scenario, which is a strong field interaction, hence NR waveforms are needed.
- Using these NR waveforms we study the sensitivity of the cWB all-sky short-duration search to gravitational waves from Black Hole Capture events during O2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Astrophysical Scenarios

- Binary black holes form either in isolated evolution or dynamically
 - $\begin{array}{ccc} \text{At merger:} & \hookrightarrow \text{circularized} & \hookrightarrow \text{may have significant eccentricity} \\ \end{array}$
- An example of dynamical formation is radiation-driven direct capture:
 - ${\sf Close \ encounter} \quad \rightarrow \quad {\sf become \ bound} \quad \rightarrow \quad {\sf quickly \ merge}$
- Direct capture is possible mainly in Globular Clusters and Galactic Nuclei as single-single interaction or binary-single interaction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Capture Waveforms

- Use NR waveforms described in Bae et al. (2017), (arXiv:1701.01548),
 "Gravitational Radiation Driven Capture in Unequal Mass Black Hole Encounters"
- Radiated energy is maximal at the boundary flyby / capture
- Use only waveforms leading to capture
- 4 different mass ratios $q = m_1/m_2 = [1, 2, 4, 8]$
- 2 waveforms for each mass ratio with different initial angular momentum (impact parameter)

Time domain waveform example with total mass $100 M_{\odot}$ at 10 kpc

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Capture Waveforms ($M_{tot} = 100 M_{\odot}, D_L = 10 \text{ kpc}$)

Analysis

- Utilize the cWB all-sky short-duration search with O2 settings
- Evaluate the sensitive distance to BH capture events during O2
- Part of parameter space (small M_{tot}, high q) are affected by blip glitches

2D-histogram of detection statistics (rho) and blip glitch identifier (Qveto), $(M_{\rm tot} = 10 M_{\odot}, q = 4)$

Scalogram ((E00+E90)/2)

Reconstructed time-frequency map in L1 $(M_{\rm tot} = 100 M_{\odot}, q = 2)$

イロト イボト イヨト イヨト

э

Search Sensitivity

- Injection of waveforms for 4 different total masses: (10, 50, 100, 200) M_{\odot}
- Find detection efficiency at an iFAR of 1 yr
- Convert to distance and compute sensitive volume

Search Sensitivity

- Comparison of range at iFAR 1 yr for 2 different impact parameters
- Relative difference in range for the first set with larger impact parameter compared to the second set with smaller impact parameter
- In general: Larger impact parameter \rightarrow more energy radiated in GW \rightarrow farther range
- But depends also on the particular spectral content of the signal

Conclusion / Outlook

- cWB all-sky search is sensitive to Black Hole Capture events
- A dedicated search towards such events is useful
- In this work work we estimate a horizon distance at iFAR 1 yr
- Currently we are writing a paper on these results (O2)
- We plan to extend the study to hyperbolic events
- We plan to target the search towards better sensitivity for BH captures and flyby encounters

Thanks for your attention!

イロト 不得下 不足下 不足下 二日