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— Motivation —

Light interacts with GWs. From a general relativistic perspective, this can be viewed
as a perturbation of light due to GWs; i.e., light is perturbed as GWs pass through
space in which it travels. We address the issue how light is perturbed in the presence
of GWs; for a general situation with arbitrary K" = (¢ 'w,K) and k" = (¢ 'w,, k).

Primarily, our analysis focuses on:
— Solving Maxwell’s equations in a spacetime perturbed by GWs.
— Identifying a perturbation of light with a delay of the photon transit time.

— Applying the above principle to the detection of GWs via a PTA.



1. Light perturbed by GWs

(1) Spacetime geometry perturbed by GWs

Suppose that our gravitational waves propagate along the z’-axis while being polarized in the z'y/-
plane:

hfj = h, (ef/ ® ef/ - 621'/ ® 6?) exp [i (k2" — wyt)]

hiy = hx (633/ ® 6?/ + egi/ ® ef/) exp i (k2 — wet —7/2)] 7 wy = ck.

Then the spacetime geometry reads in the coordinates (¢,2',y',2") (GW frame):

ds® = —2di® + [1 R (mei(m’—%t))} dz’ + 2R (hxei(kz’_”gt_”ﬂ)) do'dy’ + [1 R (h+ei(k2’w))] dy? + d2".

By means of Euler angles, we express

x' =R (1,0,0)x,
with
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Then the spacetime geometry is expressed in the coordinates (¢, z,y, z) (detector frame):

ds® =

with

Hy
H,

—dt*+ {1+ [cos (2¢) (C082 6 cos® ¢ — sin’ @) — 2sin (24) cos 0 cos psin ¢| H.,
+ [—sin (29)) <C082 6 cos® ¢ — sin’ gb) — 2c0s (21)) cos 0 cos ¢ sin cﬂ H, } da?

+1 [ZCOS (2¢) (1+ cos’ 0) cos ¢ sin ¢ + 2sin (2¢)) cos 6 (2 cos® ¢ — 1)] H.,

- [—23111 (2¢)) (1 + cos” (9) cos ¢ sin ¢ + 2cos (21)) cos 0 (2 cos® ¢ — 1)} HX} dxdy
+ {[—2cos (21)) cos O sin O cos ¢ + 2sin (2¢)) sin @ sin ¢| H ;.

+ [2sin (2¢)) cos B sin 6 cos ¢ + 2cos (2¢0) sin @ sin ¢| H, } dxdz

+ {1 + [cos (29)) ((3082 6 sin’ ¢ — cos” ¢) + 2sin (29)) cos 0 cos ¢ sin ¢] H.,

+ [—sin (2¢0) (cos® O sin® ¢ — cos” @) + 2cos (2t)) cos @ cos psin ¢| H, } dy?

+ {[—2cos (21)) cos B sin O sin ¢ — 2sin (2¢)) sin O cos @] H .

+ [2sin (24)) cos O sin O sin ¢ — 2cos (2¢)) sin @ cos ¢|] H } dydz

+ {1+ [cos (2¢) sin® 0] Hy + [—sin (2¢)sin® 0] H, } dz7,

R (hyexpli(kxsinbcos ¢ + kysinfsin ¢ + kz cos — wgt)]) ,
R (hyexp[i(krsinfcos ¢+ kysinfsin ¢ + kzcost — wet —7/2)]).

[IN.B.| For ¢ — ¢ + 7 /4, [cos (2¢)) (- -+ ) +sin (2¢0) (- )]hy — [—sin (2¢) (- -+ ) 4 cos (20) (- - - )| hy:

sor modes of + and x polarizations.

spin-2 ten-



(2) Light rays propagating through perturbed spacetime

Our light (electromagnetic radiation) can be described by Maxwell’s equations defined in curved

(perturbed) spacetime:
OA" — RF,AY = 0.

However, it turns out
Ri; =0 (h7),

and hence

OA" =0 (1)

We recast the LHS,
0? 0? 0? 0?
te—t =t =,
c20t?2  0x?  OJy? 027
in order to obtain a decomposition solution by means of perturbation:

Al = AL+ 045, + 0O (h7),

A" = O, (A} + 647 ) + 0y (4 +04),) + 0 () ; O, = -

with the zeroth-order solution from
O,A! = 0 (unperturbed),
and the first-order solution from

DoéA'fh] = —Op 4! (first order in h).



[Solution]| for a general configuration with both light and GWs propagating in arbitrary directions

E.g., the radio emission from a pulsar can be approximately modeled as linearly polarized light. Then
to first order in /, the total solution is given by

’iotal (ta X) - Af) (tv X) + 5Afh] (ta X) )

where the zeroth-order solution is

| K |
Al (t,x) = | — 4 0, | Aexp[i (K- x — wet)],
,/K§+K§ ﬁ/K2+K2

and the first-order solution is

5 Al (£,5) = 2 (we/wy) AL (1, %) H (1, K, K)

with
Ht,x; K k) = h Fo(¢,0,1;K)cos (kxsinf cos ¢ + kysin 0 sin ¢ + kz cos 0 — wgt)
—hyFx (¢,0,1¢; K)sin (kxsin 6 cos ¢ + kysin @ sin ¢ + kz cos — wgt)
and
cos? Y cos (21)) — 2 cos Yy sin b, sin (¢ — ¢, ) sin (24
Fo 6.0, K) = SR Z2 s B O = 0JSBY) g (g K = F (6.0.0 — 7/1K).
(1 —cosm)
with
cosyp = cos cos B, + sinfsin 6, cos (¢ — @), cosvyy = sinf cos b, — cos b sin b, cos (¢ — ¢y,

and

sinf, cos o, = K, /K, sinf,sin¢, = K,/K, cosf, = K./K.
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N.B.| The full perturbation solution is dA%, ~ O (h) + (w./w,) O (k). However, practically, w. > w,,
[h] g g

and therefore (w./w,) O (h) is the only meaningful piece to take and remains in the geometrical optics
approximation; e.g., w./w, ~ 10° to 10" for LIGO, 10" to 10" for LISA, 10" to 10'7 for PTA etc.

IN.B.|For ¢y — ¢ —7/4, hoFy ~ hy[(---)cos(2¢0) + (- )sin (2¢0)] = huFx ~ hy[(--+)sin (2¢)) — (- -+ ) cos (20))]:

spin-2 tensor modes of + and X polarizations.



2. Perturbation of light and delay of photon transit time

Suppose light propagates along the direction of K = (K,, K,, K.) = (0,0,—K) (e.g., PTA). As K. =
—K < 0, light propagates along —z direction; i.e., from the sky towards the earth. The perturbed
light can be expressed by the electric field:

éotal (tv 0,0, Z) — _C_l (8/675) ’iotal (ta 0,0, Z)
= B (1,0,0,2) + 0B} (£,0,0,2)

Starting at (¢, z) = (¢, L), the propagation path can be written as z = L —c(t — ty) for tc <t <ty + T,
with L = cI'. Then we find
5Bl OBy,

we . . .
= — = — (hy F +ih Fy) {1 —exp [ikL (1 + cos 0)]} exp [—1 (kL + wgto)],

We

z=0 z=L

where

F, = F.(0, — 3m/2) = sin®(0/2) cos (20),
F, = F. (0, — 31/2) = sin*(6/2)sin (2),

are antenna patterns for + and x polarization states.

IN.B.] For v — ¢ — /4, h F, ~ hycos(2¢) — hyFy ~ hysin(2¢): spin-2 tensor modes of + and x
polarizations.
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From the null geodesic condition ds?> = 0, a delay of the photon transit time can be expressed as
5T[h] 1 0

T 2cT |,

_kLL (hy Fy +ihy Fy) {1 —exp [ikL (1 + cos0)] }exp [—1 (KL + wgty)] ; T = L/c.

h: (t,0,0,2) dz + O (h?)

2

Then we establish a relation:

0 T[ 1)
T

OF [Zh]

OE!
B

(1]

- B

] N = (iwT) ™ = (KL)™".

z2=0 z=L

In general, for light with arbitrary K = (K,, K, K.),

T, ar 0K,

T B

%Pl
E;

;. earth = (0,0,0),
sky sky = (—Lsin 0, cos ¢, — L sin 0, sin ¢, — L cos 0,)

earth
1

kL

2

(heFy +ih Fy) {1 —exp[ikL (1 — cos )]} exp [—1 (kL + wyto)].

That is, a perturbation of light due to GWs is physically equivalent to a delay of the photon transit
time: the former is described by Maxwell’s equations, and the latter by the null geodesic equation.
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3. Application - Pulsar Timing Array (PTA)

X

Detector frame GW frame

In order to measure pulse arrival time of a pulsar, one can arrange a detector (radio telescope) to
receive photons emitted from the pulsar. A pulsar can serve as an astronomical clock of excellent
precision, with the constancy of the measured pulse frequency v,. However, with GWs passing
through our space, the measured frequency v (t) will vary slightly. Then the effects of GWs can be
determined from the variation of the frequency, [v, — v (t)] /v.
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(1) GW signal readout and response function for PTA

Instead of the frequency v, consider the elapse 7 = v~!, which is equal to the period of a pulsar. As
GWs pass through our space, the measured elapse 7 (¢) will vary slightly, and we have
Vo — U (T t) — 7o el .
vo—vit) ~ Tl =" (delay of photon transit time)
VO TO
i

kL

Y

(hyFy +ih  Fy) {1l —exp [ikL (1 — cos 1)} exp [—1 (kL + wgtp)].

For the cumulative variation, we define a restdual [Detweiler, ApJ (1979)]:

) = / o=y () ) /Oww—fo y

-~ h+g+ (f) —;lhxgx (f) exp (—217Tft),

Foexp (—ikL) {1 — exp [2im f1, (1 — cosy1)]}
472 fr, ’

Fyexp (—ikL) {1 — exp [2im f, (1 — cosy1)]}
42 fr,

g (f)

G (f)
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Fourier transformation of ¢ (¢) yields

hi (£)G+ (£) + b (£)G (f)

t(f) = 7

The relation holds
(). ~ [T
- 2
he (1] 16+ (HP+

2

e ()] 16 (1)

The detector response function can be computed by taking a sky average:

1 T 2m m . * *
R() = g [ 0 [ o [ dosno[0. (G (1) +0. (G ()
(32 7} — 127 f7, + Bsin (4m f 7o) for K = (0,0, —K)
_ 76877 o575 IR
= X 0
2 15 2 L — 115 5t *
94 150 00;950 : bcos b o (f*r7)  forK = (K, K, K.) and f7, < 1.
\ T

However, one can infer )
ST ~ LR R,

Then, the sensitivity can be determined from

hif) = fh(f) ~ \/f2 <;;(t)>time'

(f)
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X =sinflcosy, Y =sinfsiny, 4 =-cosb

Plots of antenna patterns for the detector responses: for light from a millisecond pulsar with 7, ~
1073 s,

(A) |Gy «| at f < 1Hz, (B) |Gox| at f = 1000 Hz for K = (0,0, —K);
(C) [Gsx| at 6, = m+cos™! (\/15/23), (D) |G| at 6, = 37/2 for K = (K, K,, K.) in the regime f < 1 Ha.
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Plot of R (f) for light with K = (0,0, —K) from a millisecond pulsar with 7, ~ 107 s.
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Plot of Ry (6,) = (29 + 150cos® 6, — 115cos*6,) / (19207%) for light with K = (K,, K,, K.) from a mil-

lisecond pulsar with 7, ~ 107 s; having the maximum at 0, = 7 + cos™! <\/15/23> ~ 216° and the
minimum at 6, = 37/2.
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(2) Sensitivity curves for PTA

The sensitivity of our PTA can be determined from

h1) ~ ([P

Now, we can estimate the r.m.s. of residual:

EIE <[20170 /O t /Oh (t,0,0,z)dzdtr>

—1
~ wg hmax-

For example, consider a periodic source of GWs: two supermassive black holes of mass M in a circular
orbit of radius R, about one another, the luminosity distance of which is . Then we have [Detweiler,

ApJ (1979)]
200M M 1010 1y
hmax ~ 1 Rl (—
vt (5) (o) ()

200M\ */? /1000
wg ~ 2 X 10_8 S_1 (T) ( M ®) .

and

Therefore,

R, \*/ M \* /10"y
/ (12 ~ —6 0
() ~ 210 <200M> <1010M@> ( r )
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With R (f) and (v?(¢)) determined, the sensitivity curves for our PTA are obtained: e.g. from the
GW source with M ~ 10°M., R, ~ 2 x 101 M, and r ~ 10% ly.
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Plot of h (f) for 7, ~ 10ms in comparison with EPTA, IPTA, SKA curves [Moore et al., CQG (2015)].
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4. Conclusions and discussion

. A perturbation of light due to GWs is physically equivalent to a delay of the photon
transit time: Maxwell’s equations vs. null geodesic equation

0Ti) OE, OE,
T Ei Ei

Y

N = (w) = GKL) "

z=0 z=L

. To determine the effects of GWs via a PTA, we may consider the variation of the
elapse 7 (t) = v~! (t), instead of the variation of the frequency v (¢). Then it will be
equivalent to the delay of photon transit time:

vo—v(l) 7'(15)—7‘0.

Vo To

. We have determined the response function and the residual to construct a sensi-
tivity curve for a PTA. Our results are in good agreement with the literature.

. Our analysis can be extended to more complex arrays for GW detection than a
PTA: e.g., interferometers such as LIGO and LISA, which require a description
of light rays in more complicated configurations. We leave further analysis to a
follow-up study.
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