Light Perturbation and Detection of Gravitational Waves via Pulsar Timing Arrays

Dong-Hoon Kim (Seoul National University) in collaboration with
Chan Park (National Institute for Mathematical Sciences)
Based on Eur. Phys. J. C 81:563 (2021)

The 8th KAGRA International Workshop KASI, Korea, July 8, 2021

Outline

1. Light perturbed by GWs

2. Perturbation of light and delay of photon transit time
3. Application - Pulsar Timing Array (PTA)
4. Conclusions and discussion

Light interacts with GWs. From a general relativistic perspective, this can be viewed as a perturbation of light due to GWs; i.e., light is perturbed as GWs pass through space in which it travels. We address the issue how light is perturbed in the presence of GWs; for a general situation with arbitrary $K^{\mu}=\left(c^{-1} \omega_{\mathrm{e}}, \mathbf{K}\right)$ and $k^{\mu}=\left(c^{-1} \omega_{\mathrm{g}}, \mathbf{k}\right)$. Primarily, our analysis focuses on:

- Solving Maxwell's equations in a spacetime perturbed by GWs.
- Identifying a perturbation of light with a delay of the photon transit time.
- Applying the above principle to the detection of GWs via a PTA.

1. Light perturbed by GWs

(1) Spacetime geometry perturbed by GWs

Suppose that our gravitational waves propagate along the z^{\prime}-axis while being polarized in the $x^{\prime} y^{\prime}$ plane:

$$
\begin{aligned}
h_{i j}^{+} & =h_{+}\left(e_{i}^{x^{\prime}} \otimes e_{j}^{x^{\prime}}-e_{i}^{y^{\prime}} \otimes e_{j}^{y^{\prime}}\right) \exp \left[\mathrm{i}\left(k z^{\prime}-\omega_{\mathrm{g}} t\right)\right], \\
h_{i j}^{\times} & =h_{\times}\left(e_{i}^{x^{\prime}} \otimes e_{j}^{y^{\prime}}+e_{i}^{y^{\prime}} \otimes e_{j}^{x^{\prime}}\right) \exp \left[\mathrm{i}\left(k z^{\prime}-\omega_{\mathrm{g}} t-\pi / 2\right)\right] ; \omega_{\mathrm{g}}=c k .
\end{aligned}
$$

Then the spacetime geometry reads in the coordinates $\left(t, x^{\prime}, y^{\prime}, z^{\prime}\right)$ ($G W$ frame):

$$
d s^{2}=-c^{2} d t^{2}+\left[1+\Re\left(h_{+} e^{\mathrm{i}\left(k z^{\prime}-\omega_{g} t\right)}\right)\right] d x^{\prime 2}+2 \Re\left(h_{\times} e^{\mathrm{i}\left(k z^{\prime}-\omega_{g} t-\pi / 2\right)}\right) d x^{\prime} d y^{\prime}+\left[1-\Re\left(h_{+} e^{\mathrm{i}\left(k z^{\prime}-\omega_{g} t\right)}\right)\right] d y^{\prime 2}+d z^{\prime 2} .
$$

By means of Euler angles, we express

$$
\mathbf{x}^{\prime}=\mathbf{R}(\psi, \theta, \phi) \mathbf{x},
$$

with

$$
\begin{aligned}
\mathbf{R}(\theta, \phi, \psi) & =\left[\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \psi \cos \theta \cos \phi-\sin \psi \sin \phi & \cos \psi \cos \theta \sin \phi+\sin \psi \cos \phi & -\cos \psi \sin \theta \\
-\sin \psi \cos \theta \cos \phi-\cos \psi \sin \phi & -\sin \psi \cos \theta \sin \phi+\cos \psi \cos \phi & \sin \psi \sin \theta \\
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta
\end{array}\right] .
\end{aligned}
$$

Then the spacetime geometry is expressed in the coordinates (t, x, y, z) (detector frame):

$$
\begin{aligned}
d s^{2}= & -c^{2} d t^{2}+\left\{1+\left[\cos (2 \psi)\left(\cos ^{2} \theta \cos ^{2} \phi-\sin ^{2} \phi\right)-2 \sin (2 \psi) \cos \theta \cos \phi \sin \phi\right] H_{+}\right. \\
& \left.+\left[-\sin (2 \psi)\left(\cos ^{2} \theta \cos ^{2} \phi-\sin ^{2} \phi\right)-2 \cos (2 \psi) \cos \theta \cos \phi \sin \phi\right] H_{\times}\right\} d x^{2} \\
& +\left\{\left[2 \cos (2 \psi)\left(1+\cos ^{2} \theta\right) \cos \phi \sin \phi+2 \sin (2 \psi) \cos \theta\left(2 \cos ^{2} \phi-1\right)\right] H_{+}\right. \\
& \left.+\left[-2 \sin (2 \psi)\left(1+\cos ^{2} \theta\right) \cos \phi \sin \phi+2 \cos (2 \psi) \cos \theta\left(2 \cos ^{2} \phi-1\right)\right] H_{\times}\right\} d x d y \\
& +\left\{[-2 \cos (2 \psi) \cos \theta \sin \theta \cos \phi+2 \sin (2 \psi) \sin \theta \sin \phi] H_{+}\right. \\
& \left.+[2 \sin (2 \psi) \cos \theta \sin \theta \cos \phi+2 \cos (2 \psi) \sin \theta \sin \phi] H_{\times}\right\} d x d z \\
& +\left\{1+\left[\cos (2 \psi)\left(\cos ^{2} \theta \sin ^{2} \phi-\cos ^{2} \phi\right)+2 \sin (2 \psi) \cos \theta \cos \phi \sin \phi\right] H_{+}\right. \\
& \left.+\left[-\sin (2 \psi)\left(\cos ^{2} \theta \sin ^{2} \phi-\cos ^{2} \phi\right)+2 \cos (2 \psi) \cos \theta \cos \phi \sin \phi\right] H_{\times}\right\} d y^{2} \\
& +\left\{[-2 \cos (2 \psi) \cos \theta \sin \theta \sin \phi-2 \sin (2 \psi) \sin \theta \cos \phi] H_{+}\right. \\
& \left.+[2 \sin (2 \psi) \cos \theta \sin \theta \sin \phi-2 \cos (2 \psi) \sin \theta \cos \phi] H_{\times}\right\} d y d z \\
& +\left\{1+\left[\cos (2 \psi) \sin ^{2} \theta\right] H_{+}+[-\sin (2 \psi) \sin \theta] H_{\times}\right\} d z^{2}
\end{aligned}
$$

with

$$
\begin{aligned}
H_{+} & \equiv \Re\left(h_{+} \exp \left[\mathrm{i}\left(k x \sin \theta \cos \phi+k y \sin \theta \sin \phi+k z \cos \theta-\omega_{\mathrm{g}} t\right)\right]\right) \\
H_{\times} & \equiv \Re\left(h_{\times} \exp \left[\mathrm{i}\left(k x \sin \theta \cos \phi+k y \sin \theta \sin \phi+k z \cos \theta-\omega_{\mathrm{g}} t-\pi / 2\right)\right]\right) .
\end{aligned}
$$

[$\boldsymbol{N} . \boldsymbol{B}$.] For $\psi \rightarrow \psi+\pi / 4,[\cos (2 \psi)(\cdots)+\sin (2 \psi)(\cdots)] h_{+} \rightarrow[-\sin (2 \psi)(\cdots)+\cos (2 \psi)(\cdots)] h_{\times}$: spin-2 tensor modes of + and \times polarizations.

(2) Light rays propagating through perturbed spacetime

Our light (electromagnetic radiation) can be described by Maxwell's equations defined in curved (perturbed) spacetime:

$$
\square A^{\mu}-R_{\nu}^{\mu} A^{\nu}=0
$$

However, it turns out

$$
R_{i j}=\mathcal{O}\left(h^{2}\right)
$$

and hence

$$
\square A^{i}=\mathcal{O}\left(h^{2}\right)
$$

We recast the LHS,

$$
\square A^{i}=\square_{\mathrm{o}}\left(A_{\mathrm{o}}^{i}+\delta A_{[h]}^{i}\right)+\square_{[h]}\left(A_{\mathrm{o}}^{i}+\delta A_{[h]}^{i}\right)+\mathcal{O}\left(h^{2}\right) ; \square_{\mathrm{o}} \equiv-\frac{\partial^{2}}{c^{2} \partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}},
$$

in order to obtain a decomposition solution by means of perturbation:

$$
A^{i}=A_{\mathrm{o}}^{i}+\delta A_{[h]}^{i}+\mathcal{O}\left(h^{2}\right),
$$

with the zeroth-order solution from

$$
\square_{\mathrm{o}} A_{\mathrm{o}}^{i}=0 \text { (unperturbed) },
$$

and the first-order solution from

$$
\square_{\mathrm{o}} \delta A_{[h]}^{i}=-\square_{[h]} A_{\mathrm{o}}^{i} \text { (first order in } h \text {). }
$$

[Solution] for a general configuration with both light and GWs propagating in arbitrary directions
E.g., the radio emission from a pulsar can be approximately modeled as linearly polarized light. Then to first order in h, the total solution is given by

$$
A_{\text {total }}^{i}(t, \mathbf{x})=A_{\mathrm{o}}^{i}(t, \mathbf{x})+\delta A_{[h]}^{i}(t, \mathbf{x}),
$$

where the zeroth-order solution is

$$
A_{\mathrm{o}}^{i}(t, \mathbf{x})=\left(-\frac{K_{y}}{\sqrt{K_{x}^{2}+K_{y}^{2}}} \delta_{x}^{i}+\frac{K_{x}}{\sqrt{K_{x}^{2}+K_{y}^{2}}} \delta_{y}^{i}\right) \mathcal{A} \exp \left[\mathrm{i}\left(\mathbf{K} \cdot \mathbf{x}-\omega_{\mathrm{e}} t\right)\right]
$$

and the first-order solution is

$$
\delta A_{[h]}^{i}(t, \mathbf{x})=2\left(\omega_{\mathrm{e}} / \omega_{\mathrm{g}}\right) A_{\mathrm{o}}^{i}(t, \mathbf{x}) \mathcal{H}(t, \mathbf{x} ; \mathbf{K}, \mathbf{k}),
$$

with

$$
\begin{aligned}
\mathcal{H}(t, \mathbf{x} ; \mathbf{K}, \mathbf{k}) \equiv & h_{+} \mathcal{F}_{+}(\phi, \theta, \psi ; \mathbf{K}) \cos \left(k x \sin \theta \cos \phi+k y \sin \theta \sin \phi+k z \cos \theta-\omega_{\mathrm{g}} t\right) \\
& -h_{\times} \mathcal{F}_{\times}(\phi, \theta, \psi ; \mathbf{K}) \sin \left(k x \sin \theta \cos \phi+k y \sin \theta \sin \phi+k z \cos \theta-\omega_{\mathrm{g}} t\right),
\end{aligned}
$$

and

$$
\mathcal{F}_{+}(\phi, \theta, \psi ; \mathbf{K}) \equiv \frac{\cos ^{2} \gamma_{2} \cos (2 \psi)-2 \cos \gamma_{2} \sin \theta_{\star} \sin \left(\phi-\phi_{\star}\right) \sin (2 \psi)}{2\left(1-\cos \gamma_{1}\right)}, \quad \mathcal{F}_{\times}(\phi, \theta, \psi ; \mathbf{K})=\mathcal{F}_{+}(\phi, \theta, \psi-\pi / 4 ; \mathbf{K}),
$$

with

$$
\cos \gamma_{1} \equiv \cos \theta \cos \theta_{\star}+\sin \theta \sin \theta_{\star} \cos \left(\phi-\phi_{\star}\right), \cos \gamma_{2} \equiv \sin \theta \cos \theta_{\star}-\cos \theta \sin \theta_{\star} \cos \left(\phi-\phi_{\star}\right),
$$

and

$$
\sin \theta_{\star} \cos \phi_{\star}=K_{x} / K, \quad \sin \theta_{\star} \sin \phi_{\star}=K_{y} / K, \quad \cos \theta_{\star}=K_{z} / K
$$

[N.B.] The full perturbation solution is $\delta A_{[h]}^{i} \sim \mathcal{O}(h)+\left(\omega_{\mathrm{e}} / \omega_{\mathrm{g}}\right) \mathcal{O}(h)$. However, practically, $\omega_{\mathrm{e}} \gg \omega_{\mathrm{g}}$, and therefore $\left(\omega_{\mathrm{e}} / \omega_{\mathrm{g}}\right) \mathcal{O}(h)$ is the only meaningful piece to take and remains in the geometrical optics approximation; e.g., $\omega_{\mathrm{e}} / \omega_{\mathrm{g}} \sim 10^{9}$ to 10^{14} for LIGO, 10^{12} to 10^{19} for LISA, 10^{14} to 10^{17} for PTA etc.
[N.B.] For $\psi \rightarrow \psi-\pi / 4, h_{+} \mathcal{F}_{+} \sim h_{+}[(\cdots) \cos (2 \psi)+(\cdots) \sin (2 \psi)] \rightarrow h_{\times} \mathcal{F}_{\times} \sim h_{\times}[(\cdots) \sin (2 \psi)-(\cdots) \cos (2 \psi)]$: spin-2 tensor modes of + and \times polarizations.

2. Perturbation of light and delay of photon transit time

Suppose light propagates along the direction of $\mathbf{K}=\left(K_{x}, K_{y}, K_{z}\right)=(0,0,-K)$ (e.g., PTA). As $K_{z}=$ $-K<0$, light propagates along $-z$ direction; i.e., from the sky towards the earth. The perturbed light can be expressed by the electric field:

$$
\begin{aligned}
E_{\text {total }}^{i}(t, 0,0, z) & =-c^{-1}(\partial / \partial t) A_{\text {total }}^{i}(t, 0,0, z) \\
& =E_{\mathrm{o}}^{i}(t, 0,0, z)+\delta E_{[h]}^{i}(t, 0,0, z) .
\end{aligned}
$$

Starting at $(t, z)=\left(t_{0}, L\right)$, the propagation path can be written as $z=L-c\left(t-t_{0}\right)$ for $t_{0} \leq t \leq t_{0}+T$, with $L=c T$. Then we find

$$
\left.\frac{\delta E_{[h]}^{i}}{E_{\mathrm{o}}^{i}}\right|_{z=0}-\left.\frac{\delta E_{[h]}^{i}}{E_{\mathrm{o}}^{i}}\right|_{z=L}=\frac{\omega_{\mathrm{e}}}{\omega_{\mathrm{g}}}\left(h_{+} F_{+}+\mathrm{i} h_{\times} F_{\times}\right)\{1-\exp [\mathrm{i} k L(1+\cos \theta)]\} \exp \left[-\mathrm{i}\left(k L+\omega_{\mathrm{g}} t_{0}\right)\right],
$$

where

$$
\begin{aligned}
& F_{+} \equiv \mathcal{F}_{+}\left(\theta_{\star} \rightarrow 3 \pi / 2\right)=\sin ^{2}(\theta / 2) \cos (2 \psi), \\
& F_{\times} \equiv \mathcal{F}_{\times}\left(\theta_{\star} \rightarrow 3 \pi / 2\right)=\sin ^{2}(\theta / 2) \sin (2 \psi),
\end{aligned}
$$

are antenna patterns for + and \times polarization states.
[N.B.] For $\psi \rightarrow \psi-\pi / 4, h_{+} F_{+} \sim h_{+} \cos (2 \psi) \rightarrow h_{\times} F_{\times} \sim h_{\times} \sin (2 \psi)$: spin- 2 tensor modes of + and \times polarizations.

From the null geodesic condition $d s^{2}=0$, a delay of the photon transit time can be expressed as

$$
\begin{aligned}
\frac{\delta T_{[h]}}{T} & =\frac{1}{2 c T} \int_{L}^{0} h_{z z}\left(t_{0}, 0,0, z\right) d z+\mathcal{O}\left(h^{2}\right) \\
& \simeq-\frac{\mathrm{i}}{k L}\left(h_{+} F_{+}+\mathrm{i} h_{\times} F_{\times}\right)\{1-\exp [\mathrm{i} k L(1+\cos \theta)]\} \exp \left[-\mathrm{i}\left(k L+\omega_{\mathrm{g}} t_{0}\right)\right] ; \quad T=L / c .
\end{aligned}
$$

Then we establish a relation:

$$
\frac{\delta T_{[h]}}{T} \simeq \mathcal{N}\left[\left.\frac{\delta E_{[h]}^{i}}{E_{0}^{i}}\right|_{z=0}-\left.\frac{\delta E_{[h]}^{i}}{E_{\mathrm{o}}^{i}}\right|_{z=L}\right] ; \quad \mathcal{N}=\left(\mathrm{i} \omega_{\mathrm{e}} T\right)^{-1}=(\mathrm{i} K L)^{-1}
$$

In general, for light with arbitrary $\mathbf{K}=\left(K_{x}, K_{y}, K_{z}\right)$,

$$
\begin{aligned}
& \frac{\delta T_{[h]}}{T} \simeq \mathcal{N}\left[\left.\frac{\delta E_{[h]}^{i}}{E_{0}^{i}}\right|_{\text {earth }}-\left.\frac{\delta E_{[h]}^{i}}{E_{\mathrm{o}}^{i}}\right|_{\text {sky }}\right] ; \quad \begin{array}{l}
\text { earth }=(0,0,0), \\
\text { sky }=\left(-L \sin \theta_{\star} \cos \phi_{\star},-L \sin \theta_{\star} \sin \phi_{\star},-L \cos \theta_{\star}\right)
\end{array} \\
& \simeq-\frac{\mathrm{i}}{k L}\left(h_{+} \mathcal{F}_{+}+\mathrm{i} h_{\times} \mathcal{F}_{\times}\right)\left\{1-\exp \left[\mathrm{i} k L\left(1-\cos \gamma_{1}\right)\right]\right\} \exp \left[-\mathrm{i}\left(k L+\omega_{\mathrm{g}} t_{0}\right)\right] .
\end{aligned}
$$

That is, a perturbation of light due to GWs is physically equivalent to a delay of the photon transit time: the former is described by Maxwell's equations, and the latter by the null geodesic equation.

3. Application - Pulsar Timing Array (PTA)

In order to measure pulse arrival time of a pulsar, one can arrange a detector (radio telescope) to receive photons emitted from the pulsar. A pulsar can serve as an astronomical clock of excellent precision, with the constancy of the measured pulse frequency ν_{0}. However, with GWs passing through our space, the measured frequency $\nu(t)$ will vary slightly. Then the effects of GWs can be determined from the variation of the frequency, $\left[\nu_{0}-\nu(t)\right] / \nu_{0}$.

(1) GW signal readout and response function for PTA

Instead of the frequency ν, consider the elapse $\tau=\nu^{-1}$, which is equal to the period of a pulsar. As GWs pass through our space, the measured elapse $\tau(t)$ will vary slightly, and we have

$$
\begin{aligned}
\frac{\nu_{0}-\nu(t)}{\nu_{\mathrm{o}}} & \simeq \frac{\tau(t)-\tau_{0}}{\tau_{\mathrm{o}}}(\text { delay of photon transit time }) \\
& \simeq-\frac{\mathrm{i}}{k L}\left(h_{+} \mathcal{F}_{+}+\mathrm{i} h_{\times} \mathcal{F}_{\times}\right)\left\{1-\exp \left[\mathrm{i} k L\left(1-\cos \gamma_{1}\right)\right]\right\} \exp \left[-\mathrm{i}\left(k L+\omega_{\mathrm{g}} t_{0}\right)\right]
\end{aligned}
$$

For the cumulative variation, we define a residual [Detweiler, ApJ (1979)]:

$$
\begin{aligned}
\mathfrak{r}(t) & \equiv \int_{0}^{t} \frac{\nu_{0}-\nu\left(t^{\prime}\right)}{\nu_{0}} d t^{\prime} \simeq \int_{0}^{t} \frac{\tau\left(t^{\prime}\right)-\tau_{\mathrm{o}}}{\tau_{\mathrm{o}}} d t^{\prime} \\
& \sim \frac{h_{+} \mathcal{G}_{+}(f)+\mathrm{i} h_{\times} \mathcal{G}_{\times}(f)}{f} \exp (-2 \mathrm{i} \pi f t), \\
\mathcal{G}_{+}(f) \equiv & \frac{\mathcal{F}_{+} \exp (-\mathrm{i} k L)\left\{1-\exp \left[2 \mathrm{i} \pi f \tau_{\mathrm{o}}\left(1-\cos \gamma_{1}\right)\right]\right\}}{4 \pi^{2} f \tau_{\mathrm{o}}} \\
\mathcal{G}_{\times}(f) \equiv & \frac{\mathcal{F}_{\times} \exp (-\mathrm{i} k L)\left\{1-\exp \left[2 \mathrm{i} \pi f \tau_{\mathrm{o}}\left(1-\cos \gamma_{1}\right)\right]\right\}}{4 \pi^{2} f \tau_{\mathrm{o}}}
\end{aligned}
$$

Fourier transformation of $\mathfrak{r}(t)$ yields

$$
\tilde{\mathfrak{r}}(f)=\frac{\tilde{h}_{+}(f) \mathcal{G}_{+}(f)+\mathrm{i} \tilde{h}_{\times}(f) \mathcal{G}_{\times}(f)}{f}
$$

The relation holds

$$
\begin{aligned}
\left\langle\mathfrak{r}^{2}(t)\right\rangle_{\text {time }} & \sim f^{2} \tilde{\mathfrak{r}}(f) \tilde{\mathfrak{r}}^{*}(f) \\
& \simeq\left|\tilde{h}_{+}(f)\right|^{2}\left|\mathcal{G}_{+}(f)\right|^{2}+\left|\tilde{h}_{\times}(f)\right|^{2}\left|\mathcal{G}_{\times}(f)\right|^{2}
\end{aligned}
$$

The detector response function can be computed by taking a sky average:

$$
\begin{aligned}
\mathcal{R}(f) & \equiv \frac{1}{4 \pi^{2}} \int_{0}^{\pi} d \psi \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta\left[\mathcal{G}_{+}(f) \mathcal{G}_{+}^{*}(f)+\mathcal{G}_{\times}(f) \mathcal{G}_{\times}^{*}(f)\right] \\
& = \begin{cases}\frac{32 \pi^{3} f^{3} \tau_{0}^{3}-12 \pi f \tau_{\circ}+3 \sin \left(4 \pi f \tau_{\circ}\right)}{768 \pi^{7} f^{5} \tau^{5}} & \text { for } \mathbf{K}=(0,0,-K) \\
\frac{29+150 \cos ^{2} \theta_{\star}-115 \cos ^{4} \theta_{\star}}{1920 \pi^{2}}+\mathcal{O}\left(f^{2} \tau_{\circ}^{2}\right) & \text { for } \mathbf{K}=\left(K_{x}, K_{y}, K_{z}\right) \text { and } f \tau_{\circ} \ll 1\end{cases}
\end{aligned}
$$

However, one can infer

$$
\tilde{\mathfrak{r}}(f) \tilde{\mathfrak{r}}^{*}(f) \sim f^{-2}|\tilde{h}(f)|^{2} \mathcal{R}(f)
$$

Then, the sensitivity can be determined from

$$
h(f) \equiv f \tilde{h}(f) \sim \sqrt{\frac{f^{2}\left\langle\mathfrak{r}^{2}(t)\right\rangle_{\text {time }}}{\mathcal{R}(f)}}
$$

(C)

(B)

(D)

$$
X=\sin \theta \cos \psi, \quad Y=\sin \theta \sin \psi, \quad Z=\cos \theta
$$

Plots of antenna patterns for the detector responses: for light from a millisecond pulsar with $\tau_{0} \sim$ $10^{-3} \mathrm{~s}$,
(A) $\left|\mathcal{G}_{+, \times}\right|$at $f \ll 1 \mathbf{H z},\left(\right.$ B) $\left|\mathcal{G}_{+, \times}\right|$at $f=1000 \mathbf{H z}$ for $\mathbf{K}=(0,0,-K)$;
(C) $\left|\mathcal{G}_{+, \times}\right|$at $\theta_{\star}=\pi+\cos ^{-1}(\sqrt{15 / 23})$, (D) $\left|\mathcal{G}_{+, \times}\right|$at $\theta_{\star}=3 \pi / 2$ for $\mathbf{K}=\left(K_{x}, K_{y}, K_{z}\right)$ in the regime $f \ll 1 \mathbf{H z}$.

Plot of $\mathcal{R}(f)$ for light with $K=(0,0,-K)$ from a millisecond pulsar with $\tau_{\mathrm{o}} \sim 10^{-3} \mathbf{s}$.

Plot of $\mathcal{R}_{0}\left(\theta_{\star}\right)=\left(29+150 \cos ^{2} \theta_{\star}-115 \cos ^{4} \theta_{\star}\right) /\left(1920 \pi^{2}\right)$ for light with $\mathbf{K}=\left(K_{x}, K_{y}, K_{z}\right)$ from a millisecond pulsar with $\tau_{0} \sim 10^{-3} \mathbf{s}$; having the maximum at $\theta_{\star}=\pi+\cos ^{-1}(\sqrt{15 / 23}) \approx 216^{\circ}$ and the minimum at $\theta_{\star}=3 \pi / 2$.

(2) Sensitivity curves for PTA

The sensitivity of our PTA can be determined from

$$
h(f) \sim \sqrt{\frac{f^{2}\left\langle\mathfrak{r}^{2}(t)\right\rangle_{\text {time }}}{\mathcal{R}(f)}}
$$

Now, we can estimate the r.m.s. of residual:

$$
\begin{aligned}
\sqrt{\left\langle\mathfrak{r}^{2}(t)\right\rangle} & \simeq \sqrt{\left\langle\left[\frac{1}{2 c \tau_{\mathrm{o}}} \int_{0}^{t} \int_{c \tau_{\mathrm{o}}}^{0} h_{z z}(t, 0,0, z) d z d t\right]^{2}\right\rangle} \\
& \sim \omega_{\mathrm{g}}^{-1} h_{\max }
\end{aligned}
$$

For example, consider a periodic source of GWs: two supermassive black holes of mass M in a circular orbit of radius R_{0} about one another, the luminosity distance of which is r. Then we have [Detweiler, ApJ (1979)]

$$
h_{\max } \sim 5 \times 10^{-14}\left(\frac{200 M}{R_{\circ}}\right)\left(\frac{M}{10^{10} M_{\odot}}\right)\left(\frac{10^{10} \mathrm{ly}}{r}\right)
$$

and

$$
\omega_{\mathrm{g}} \sim 2 \times 10^{-8} \mathrm{~s}^{-1}\left(\frac{200 M}{R_{0}}\right)^{3 / 2}\left(\frac{10^{10} M_{\odot}}{M}\right)
$$

Therefore,

$$
\sqrt{\left\langle\mathfrak{r}^{2}(t)\right\rangle} \sim 2 \times 10^{-6}\left(\frac{R_{\circ}}{200 M}\right)^{1 / 2}\left(\frac{M}{10^{10} M_{\odot}}\right)^{2}\left(\frac{10^{10} \mathrm{ly}}{r}\right)
$$

With $\mathcal{R}(f)$ and $\left\langle\mathfrak{r}^{2}(t)\right\rangle$ determined, the sensitivity curves for our PTA are obtained: e.g. from the GW source with $M \sim 10^{9} M_{\odot}, R_{0} \sim 2 \times 10^{11} M_{\odot}$ and $r \sim 10^{10} \mathrm{ly}$.

Plot of $h(f)$ for $\tau_{0} \sim 10 \mathrm{~ms}$ in comparison with EPTA, IPTA, SKA curves [Moore et al., CQG (2015)].
4. Conclusions and discussion

- A perturbation of light due to GWs is physically equivalent to a delay of the photon transit time: Maxwell's equations vs. null geodesic equation

$$
\frac{\delta T_{[h]}}{T} \simeq \mathcal{N}\left[\left.\frac{\delta E_{[h]}^{i}}{E_{0}^{i}}\right|_{z=0}-\left.\frac{\delta E_{[h]}^{i}}{E_{0}^{i}}\right|_{z=L}\right] ; \quad \mathcal{N}=\left(\mathrm{i} \omega_{\mathrm{e}} T\right)^{-1}=(\mathrm{i} K L)^{-1}
$$

- To determine the effects of GWs via a PTA, we may consider the variation of the elapse $\tau(t)=\nu^{-1}(t)$, instead of the variation of the frequency $\nu(t)$. Then it will be equivalent to the delay of photon transit time:

$$
\frac{\nu_{\mathrm{o}}-\nu(t)}{\nu_{\mathrm{o}}} \simeq \frac{\tau(t)-\tau_{\mathrm{o}}}{\tau_{\mathrm{o}}}
$$

- We have determined the response function and the residual to construct a sensitivity curve for a PTA. Our results are in good agreement with the literature.
- Our analysis can be extended to more complex arrays for GW detection than a PTA: e.g., interferometers such as LIGO and LISA, which require a description of light rays in more complicated configurations. We leave further analysis to a follow-up study.

