

International Workshop

FIRST OBSERVATIONS OF BLACK HOLE

KAGRA

()()()/()/5

Leo Tsukada

On behalf of LVK collaboration

Image: Carl Knox/OzGrav/Swinburne

() /

Discovery paper

Observation of gravitational waves from two neutron star-black hole coalescences

THE LIGO SCIENTIFIC COLLABORATION, THE VIRGO COLLABORATION, AND THE KAGRA COLLABORATION

(Dated: June 30, 2021)

ABSTRACT

We report the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as <u>GW200105 and GW200115</u>; the first was observed by LIGO Livingston and Virgo, and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses $8.9^{+1.2}_{-1.5} M_{\odot}$ and $1.9^{+0.3}_{-0.2} M_{\odot}$, whereas the source of GW200115 has component masses $5.7^{+1.8}_{-2.1} M_{\odot}$ and $1.5^{+0.7}_{-0.3} M_{\odot}$ (all measurements quoted at the 90% credible level). The probability that the secondary's mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280^{+110}_{-110} Mpc and 300^{+150}_{-100} Mpc, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45^{+75}_{-33} Gpc⁻³ yr⁻¹ when assuming that GW200105 and GW200115 are representative of the NSBH population, or 130^{+112}_{-69} Gpc⁻³ yr⁻¹ under the assumption of a broader distribution of component masses.

R. Abbott *et al* 2021 *ApJL* **915** L5

arXiv : 2106.15163

Three detector network

- Two significant events in January 2020 sensitivity : Hanford (~120Mpc), Livingston (~130Mpc), Virgo (~45Mpc)
- Data quality
 GW200105 : noise 3sec before the event in L1 → de-glitched (BayesWave)
 GW200115 : overlapping noise at ~20Hz in L1 → excluded from the analysis

Detection summary

NSBH Event	GW200105	GW200115
SNR (H1, L1, V1)	N/A, <u>13.6</u> , 2.7 (Livingston only)	<u>6.9</u> , <u>8.6</u> , 2.9 (HL coincidence)
False Alarm Rate (FAR)	low latency : 1 / (15 days) offline : 1 / (3 yr)	low latency : 1 / (1513 yr) offline : 1/(182 yr) ~ < 1/ (10 ⁵ yr)
GCN Notice Latency	More than 1 day , <i>GstLAL</i> only	After 6 mins, multiple pipelines
Sky Localization	$7700 \text{ deg}_2 (low latency)$	900 deg ² (low latency) 60° 0° 0° 0° 21^{h} 18^{h} 15^{h} 12^{h} 9^{h} $6h^{\circ}$ -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -60° -30° -60°
Distance	~ 283 Mpc (<i>low latency</i>)	~ 340 Mpc (<i>low latency</i>)
# Follow-up GCNs	21 (No EM/Neutrino Counterpart)	31 (No EM/Neutrino Counterpart)

LEO TSUKADA

How to detect signals?

Signal consistency test

GW200105 : single-detector event

NSBH triggers compared against O3 noise background

- Coincident detection elevates the significance for GW200115.
 - GW200105 stands out of the background and is most significant by single detector alone.

Parameter Estimation

- Bayes' theorem Likelihood prior posterior $p(\theta \mid d) = \frac{p(d \mid \theta) \cdot p(\theta)}{p(d)}$ $\theta = \{m_1, m_2, \vec{\chi_1}, \vec{\chi_2}, D, ...\}$
- Likelihood

$$p(d | \theta) \propto \exp \left[-\frac{1}{2} \left\langle \frac{d(f)}{d(f)} - \frac{h(f; \theta)}{h(f; \theta)} \right| d(f) - h(f; \theta) \right\rangle \right]$$

data waveform model

• Waveform models based on GR

NSBH waveform Phenom NSBH/EOBNR NSBH (tides on the secondary)

<u>BBH waveform</u> Phenom PHM/EOBNR PHM (PHM=Precession+Higher Order Modes)

Two priors on the secondary spin <u>High spin ($\chi_2 < 0.99$)</u> Low spin ($\chi_2 < 0.05$)

	m_1	m_2
GW190814	$23.2^{+1.1}_{-1.0}M_{\odot}$	$2.59^{+0.08}_{-0.09}M_{\odot}$
GW200105	$8.9^{+1.2}_{-1.5}M_{\odot}$	$1.9^{+0.3}_{-0.2}M_{\odot}$
GW200115	$5.7^{+1.8}_{-2.1}M_{\odot}$	$1.5^{+0.7}_{-0.3} M_{\odot}$

Plausible NSs

Are GW200105 and GW200115 lensed??

No, given the inconsistent redshifted chirp masses.

Masses

Comparison with the maximum NS mass

Tidal effect

		$p(m_2 < M_{ m max})$	
spin prior	choice of M_{\max}	GW200105	GW200115
$(a) \chi_2 < 0.05$	$M_{ m max,TOV}$	96%	98%
(a') $ \chi_2 < 0.99$	$M_{ m max}(\chi_2)$	94%	95%
$(b) \chi_2 < 0.99$	$M_{ m max,GNS}$	93%	96%

 (a): Equation of state inferred from radio/X-ray/GW observations.

(Landry, Essick & Chatziioannou 2020)

(b) : Fit to Galactic BNS systems (Farr & Chatziioannou 2020)

- Given no information from tides or EM signals, the NS identification is purely based on the mass.
- Still, primordial BHs cannot be ruled out.

	GW200105	GW200115
\vec{v}_1	$ \vec{\chi}_1 < 0.23$	$\chi_{1,z} = -0.19^{+0.24}_{-0.50}$
	(90% confidence)	$P(\chi_{1,z} < 0) = 88\%$
$\vec{\chi_2}$	unconstrained	unconstrained

LEO TSUKADA

The 8th KAGRA INTERNATIONAL WORKSHOP

10/16

Mass-spin Correlation in GW200115

GW200115

• m_1 is correlated with $\chi_{1,z}$.

Caused by the mass-spin degeneracy in the phase evolution

$$P(3M_{\odot} \le m_1 \le 5M_{\odot}) = 30\%$$

If the BH is in the mass gap, its spin is likely to be anti-aligned with \vec{L} .

Distance – Inclination

Distance D_L

GW200105	$280^{+110}_{-110} \text{ Mpc}$
GW200115	$300^{+150}_{-100} \mathrm{Mpc}$
GW170817	$40 \mathrm{Mpc}$

Too distant to detect EM signals

Inclination θ_{JN}

Both events disfavor $\theta_{JN} \sim 90^{\circ}$. <u>Higher order modes tend to be less</u> significant.

Masses in the Stellar Graveyard in Solar Masses

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

LEO TSUKADA

Merger rate

Merger rate estimate

<u>NSBH</u>	BNS	BBH
$12 - 242 \text{ Gpc}^{-3} \text{yr}^{-1}$	$80 - 810 \text{ Gpc}^{-3} \text{yr}^{-1}$	$15 - 38 \text{ Gpc}^{-3} \text{yr}^{-1}$

- ► Broad population count all the triggers in NSBH regime $\begin{pmatrix} m_1 \in [2.5 - 40]M_{\odot} \\ m_2 \in [1 - 3]M_{\odot} \end{pmatrix}$
 - sub-threshold event contribute to rate estimates.

Event-based assume 1 count in each GW200105/GW200115-like population

➡ rate estimates based on the detection alone.

- Isolated binary evolution stellar progenitors co-evolve as a binary through common envelope rate : 0.1 – 800 Gpc⁻³yr⁻¹
- Young star cluster
 dynamical interaction in close
 encounter + isolated formation
 rate : 0.1 100 Gpc⁻³yr⁻¹

AGN disks

asymmetric-mass merger driven by gas torques and migration traps rate : $\leq 300 \text{ Gpc}^{-3} \text{yr}^{-1}$

Given the large uncertainty, any of these channels can <u>individually</u> account for the observed events.

Summary

- <u>First-ever</u> detection of likely NS-BH GW inspirals in January 2020 GW200105 : 9 M_{\odot} + 1.9 M_{\odot} (single detector) GW200115 : 6 M_{\odot} + 1.5 M_{\odot} (coincident detection)
- The secondary masses <u>suggest</u> NS-BH systems. consistent with maximum NS masses despite no detection of EM signals or tides
- Merger rate is estimated to be $\sim 100 \text{ Gpc}^{-3} \text{ yr}^{-1}$

© : Nutsinee Kijbunchoo

DANY2_C4R

consistent with plausible formation scenarios multiple channels may contribute to astrophysical merger rate.

LOOK FORWARD TO MORE 03B RESULTS !

BACKUP

LEO TSUKADA

waveform systematics

KAGRA

• a > 0 extension of TOV model using the universal relation count the posterior samples where $m < M_{\text{max}} \cap |a| < a_{\text{max}}$.

GW200115

Different mass priors yield slightly different values

GW200115

 $P(m < M_{\max} \cap |a| < a_{\max}) = 89.0\%$

 $P(m < M_{\max} \cap |a| < a_{\max}) = 95.0 \%$

credit : R. Essick, P. Landry

20/16

 $M_{\rm max}(\chi_2)$

GW200105

 $P(m < M_{\text{max}} \cap |a| < a_{\text{max}}) = 91.0\%$

 $P(m < M_{\text{max}} \cap |a| < a_{\text{max}}) = 94.5 \%$

credit : R. Essick, P. Landry

21/16

Miscellaneous Properties

- Remnant objects $M_{\rm f} = \begin{cases} 10.4^{+2.7}_{-2.0} M_{\odot} & (\text{GW200105}) \\ 7.8^{+1.4}_{-1.6} M_{\odot} & (\text{GW200115}) \end{cases} & \rho_{33}^{\perp} = \begin{cases} 1.70^{+0.94}_{-1.11} & (\text{GW200105}) \\ 0.86^{+0.90}_{-0.65} & (\text{GW200115}) \end{cases}$ Mass Spin $\chi_{\rm f} = \begin{cases} 0.43^{+0.04}_{-0.03} & (\text{GW200105}) \\ 0.38^{+0.04}_{-0.02} & (\text{GW200115}) \end{cases}$
- Test of general relativity

Less tight constraints on non-GR parameters due to low SNR.

- Higher order multipoles SNR for the $(\ell, m) = (3, 3)$ mode (cf. $\rho_{33}^{\perp} = 6.6$ for GW190814) Inconclusive evidence Precession effect P(precession vs non-precession) $= \begin{cases} 0.58:1 & (GW200105) \\ 0.76:1 & (GW200115) \end{cases}$

Tidal disruption and electromagnetic counterpart

Tidal disruption is **preferred** for

- + comparable mass ratio
 GW200105: ~1.9Msun and ~9Msun GW200115: ~1.5Msun and ~6Msun x
- + black hole with **aligned spin** GW200105: $|\vec{\chi}_1| < 0.23$ GW200115: $\chi_{1,z} = -0.19^{+0.24}_{-0.50}$
- + **small** neutron star **compactness** GW170817 disfavored stiff equations of state and GW200115 and GW200105 are no low-mass neutron stars

Electromagnetic signals disfavored if neutron star is 'swallowed' by the black holes

×

X

X

Tidal disruption and electromagnetic counterpart

GW200105 and **GW200115** source properties make a tidal disruption and a detectable electromagnetic signal unlikely.

small spin or anti-aligned spinning black hole

