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W I S H  L I S T  F O R  D E T E C T I O N  P I P E L I N E

• Efficiency in noise reduction 

• Scalable  

• Robust 

• Capability of picking signals (or candidates) with 
unknown form

Algorithm  
Efficiency

Unsupervised Learning



N O I S E  R E D U C T I O N  W I T H  S T O C H A S T I C  
A U T O R E G R E S S I V E  M O D E L I N G  

• Computationally simple 

• Capable to handle various kinds of noise from non-
stationary autocorrelated stochastic processes. 

• Many applications in diverse fields (e.g. ECG, 
econometrics), but not many in astronomy until 
recently  (e.g. exoplanet search)



Combining the autoregressive (AR), moving average 
(MA) and integrated (I) processes together into a single 
regression procedure, we have ARIMA(p,q,d) model: 

The model parameters can be determined by maximum 
likelihood estimation with the orders p and q determined 
through certain information criterion (e.g. BIC, AIC).

A U T O R E G R E S S I V E  I N T E G R AT E D  
M O V I N G  AV E R A G E  ( A R I M A )  M O D E L

(1 − B)dxt =
p

∑
i=1

aixt−i +
q

∑
j=1

bjϵt−j + ϵt + c



P R O O F - O F - C O N C E P T
• The simulated LIGO strain series with a constant 10 Hz 

sinusoidal signal of h~10-21 injected. 
strain series with a constant 10 Hz CW of h~10-21 injected. 

•

Subtract AR(45)

KDE Low-pass filter

Input data
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Subtract 
AR(31) 

+ 
Low-Pass  

filter

 I. LIGO Hanford

Raw data Residuals



Subtract 
AR(33) 

+ 
Low-Pass  

filter

II.   LIGO Livingston

Raw data Residuals

Q U I C K  L O O K  O F  G W 1 5 0 9 1 4



E F F E C T I V E N E S S  O F  A R  M O D E L

• A diversity of noises (e.g. glitches) are subsumed into 
AR model without any fine-tuning and a priori 
knowledge of the noise nature 

• A desirable feature of this method is that the transient 
GW signals were NOT absorbed by AR model.  

• AR is a maximum likelihood estimation procedure which 
weight all data points equally. As the transient signal is 
a small fraction in a given window, their data points are 
essentially ignored in the model.



O P T I M I Z I N G  S / N  R AT I O

• Kernel size of KDE  

• Range of width in an adaptive filter (max./min. Widths) 

• Window size 

We search for a combination of these hyper-parameters 
which results in the optimal peak S/N ratio.



A D A P T I V E  F I LT E R I N G
• Low frequency noise in the residuals can be further removed 

by using repeated median regression (Siegel 1982)  

• Low frequency variation is estimated by median of a sliding 
window with adaptive size (Gather & Fried 2004).



E F F E C T S  O F  W I N D O W  S I Z E

• Depend on the nature of the event one intend to 
search (BH-BH meger, NS-NS merger) 

• Large window results in small variance and smooth 
model (May under estimate the noise) 

• Small window results in small bias and adapts quick to 
changes. (May absorb the potential signal)

There should be an optimal window size.



E F F E C T S  O F  W I N D O W  S I Z E



C O M PA R I S O N  W I T H  S P E C T R A L  W H I T E N I N G

• Our framework is capable to attain a better S/N in 
comparison with the conventional spectral whitening

Spectral Whitening

AR Modeling

Peak S/N=7.54

Peak S/N=40.47



C O M PA R I S O N  W I T H  S P E C T R A L  W H I T E N I N G

• Our framework is capable to attain a better S/N in 
comparison with the conventional spectral whitening

Spectral Whitening

AR Modeling

Peak S/N=7.22

Peak S/N=25.94



S P E C T R O G R A M  O F  O P T I M A L  R E S U LT



1.  Recover GWTC-1 events with AR modeling.
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1.  Recover GWTC-1 events with AR modeling.



GW150914

2. Anomaly Detections

• After the noise subtraction, events candidates can be identified 
as anomalies, which differ from normal instances significantly. 

• If the duration of the signal is significantly longer than the 
sampling interval, a cluster of anomalies is expected. 

• Anomalies detected from different detectors (LIGO-H, LIGO-
L,KAGRA,VIRGO) can be cross-correlated and analysed with 
clustering technique. 

• The shortlisted anomalies can be taken as event candidates for 
further analysis.
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GW150914

2. Anomaly Detections
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2. Further work will be devoted to improve the performance of anomaly 
detection with machine learning techniques (e.g. autoencoder).

Input Output

AbnormalNormal
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3. Template-free parameter estimation with AR spectral analysis

• Cleaned signal can be fitted with an 2nd stage AR model. 

• Signal can be reconstructed from the best-fit model.  

• Characteristic equation can be obtained from          and the order    .  

•              

• QNM frequency/Damping can be obtained from the complex roots.                     

{aj} p

F(z) = 1 −
p

∑
j=1

ajzj = 0

zk = exp(i2πfkΔt) Re( fk)
Im( fk)

Frequency

Damping

It has been shown that this can extract the ring-down freq./damping timescale 
from GW150914 (Shinkai 2018,2019).
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T H A N K  Y O U  V E R Y  M U C H


