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2 neutron star-black holes (NSBHs) 
reported last week



Analysis workflow of compact binary coalescence
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(1) Detection



Analysis workflow of compact binary coalescence
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(2) Low-latency inference

Bayestar skymap of GW200115 Low-latency classification of GW200115

Produced in ~seconds, but subject to search bias.



Analysis workflow of compact binary coalescence
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(3) Bayesian parameter estimation (PE)
• Stochastic sampling of posterior, 

𝑝 𝜃 𝑑) ∝ 𝑝 𝜃 𝑝 𝑑 𝜃 .

𝜃: source parameters
(masses, spins, location etc.)

𝑑: data
• More accurate than the initial estimates.

ØTake into account measurement errors.
ØFiner resolution of masses and spins
ØInclude more physics (precession, 

higher-order moments, tides etc.) Estimated masses of GW200105 and GW200115
R. Abbott et al., Astrophys. J. Lett. 915 (2021).

prior likelihood



PE is computationally costly
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The median latency in O3 is 59 hours.

PE of binary neutron star (BNS) can 
take ~years without any approximate 
methods.

Too slow for follow-up observations 
of BNS or NSBH.

More detections make it tough.
Figure: Latencies of PE updates in O3



Why is PE costly?
PE computes likelihood more than millions of times.
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ℎ 𝜃 : template waveform

The inner products involve the frequency-domain waveform 4ℎ 𝑓!; 𝜃 .
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𝑆!: Power spectral density at the 𝑙-th frequency bin
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Why is PE costly?
Typically, the evaluations of 4ℎ 𝑓!; 𝜃 are computationally expensive.

The cost is proportional to the number of frequency samples, which is ∼
duration of signal × (frequency range of signal).
à It is huge for BNS or NSBH signal, which is long and high-frequency.

Two complementary methods to reduce the number of frequency samples 
where waveforms are evaluated:
1.  Focused Reduced Order Quadrature (FROQ)

SM and Vivien Raymond, Phys. Rev. D 102, 104020 (2020).

2.  Multi-banding
SM, arXiv:2104.07813 (2021). 9



1.   Focused Reduced Order Quadrature (FROQ)
SM and Vivien Raymond, Phys. Rev. D 102, 104020 (2020).
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Reduced Order Quadrature (ROQ)
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P. Canizares et al., Phys. Rev. Lett. 114, 071104 (2015).
R. Smith et al., Phys. Rev. D 94, 044031 (2016).

Waveforms = vectors in 𝐿-dimensional space  𝐿: number of frequency samples

Subspace of waveforms is much lower dimensional.

Approximate waveforms with 𝐾 (≪ 𝐿) basis vectors 𝐵. 𝑓! (𝑘 = 1,2, … , 𝐾) :

!ℎ 𝑓! ≃ %
"#$

%

!ℎ 𝐹" 𝐵" 𝑓! .

The number of waveform evaluations is reduced to 𝐾 → ∼ 𝐿/𝐾 speed up

Speed-up gains of 𝒪 10+ for BNS, reducing the run time of PE to ~hours.



Focused Reduced Order Quadrature (FROQ)
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The parameter space can be significantly restricted from the initial estimates.

Waveforms in the restricted space have similar morphologies.
à The subspace of waveforms is extremely low dimensional.
à Much smaller 𝐾, and much larger speed-up gains of 𝐿/𝐾.

Initial estimates of 
masses and spins



𝜇! − 𝜇"
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Combinations whose initial estimates are reliable:

𝜇$ = 0.974𝜓& + 0.209𝜓' + 0.0840𝜓(,

𝜇' = −0.221𝜓& + 0.823𝜓' + 0.524𝜓(.

𝜓/, 𝜓+, 𝜓0 are the coefficients in the Post-Newtonian expansion of GWʼs phase 
depending on masses (𝑚#, 𝑚+) and spin components in parallel with the orbital 
angular momentum (𝜒#, 𝜒+) , 

Ψ 𝑓 = 𝜓/
𝑓
𝑓123

'40
+ 𝜓+

𝑓
𝑓123

'#
+ 𝜓0

𝑓
𝑓123

'+0
,

where 𝑓123 = 200 Hz.

Their range is determined based on search biases and statistical errors.



𝜇! − 𝜇"
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Chirp mass                        
ℳ = 𝑚!𝑚"

!
"/ 𝑚! +𝑚"

#
"

Mass ratio 
𝑞 = 𝑚"/𝑚!

Mass-weighted spin

𝛽 =
1
12
%
$%&

'

113
𝑚$

𝑚& +𝑚'

'
+ 75

𝑚&𝑚'

𝑚& +𝑚'
' 𝜒$

𝜇!-constant planes 𝜇"-constant planes

Posterior samples of 
BNS



𝜇! − 𝜇"

15Restricted parameter space

Narrow, but 
efficiently 
encompass 
samples



• Waveform model：TaylorF2

• 𝑚#, 𝑚+ < 3𝑀⊙

• Low-spin: 𝜒 < 0.05,      High-spin: 𝜒 < 0.7

• Basis sizes are 𝒪 10 , and speed-up gains are 𝒪 100 − 𝒪 106 . 16

Table: Basis sizes and speed-up gains
Basis sizes
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Performance

• Thousands of simulated BNS 
signals in O2 data.

• The run time is                              
< 16 minutes for 50%,                  
< 29 minutes for 90% of the 
signals.

• No statistically significant 
biases from the restriction of 
parameter space. Figure: Histogram of PE run times



25 deg2 (Bayestar)   ⇨ 19 deg2 (FROQ) at median 18
Figure: Cumulative distribution of searched areas
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Short summary of FROQ
• FROQ builds a compact ROQ basis in narrow parameter space, whose range is 

restricted based on the initial estimates of masses and spins.

• FROQ relies on the two combinations of masses and spins, 𝜇# and 𝜇+, whose 
initial estimates are reliable. 

• FROQ speeds up PE of BNS signal by a factor of 𝒪 100 − 𝒪 106 , reducing its 
run time to a few tens of minutes.

• FROQ PE is accurate enough to update the initial localization and classification.

• 𝜇# and 𝜇+ can also be used to make stochastic sampling more efficient               
(See Eunsubʼs poster (P09) for more detail). E. Lee, SM, and T. Hideyuki in preparation. 19



2. Multi-banding
SM, arXiv:2104.07813 (2021).

20



ROQ is not easy-to-use
• Basis vectors 𝐵. 𝑓! need to be computed offline with the greedy algorithm,

!ℎ 𝑓! ≃ %
"#$

%

!ℎ 𝐹" 𝐵" 𝑓! .

• Computationally costly for long waveforms. Numerically very tough for the 
third-generation detectors (c.f. 1.4Msun-1.4Msun BNS signal is ~1.8 hours 
from 5 Hz).

• It needs to be done for each new waveform model.

21



Multi-banding

• The frequency interval is 1/𝑇, 
where 𝑇 is the duration of data.

• Frequency increases with time.
à Time-to-merger decreases 
with frequency.

• An increasing frequency interval 
can be used, reducing the 
number of waveform evaluations 
at high frequencies.

22
Figure: gravitational waves from 

compact binary coalescence 



Multi-banding
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where 𝑓! = 𝑙/𝑇.

Number of 
frequency bands

Window function 
of the 𝑏-th band
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Multi-banding
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4
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(7) are the inverse Fourier transform of ;𝑑!/𝑆! and 𝑤 7 𝑓! 4ℎ 𝑓! .



Multi-banding
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Multi-banding
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How to determine frequency bands
Given 𝑇(7), the starting frequency 𝑓 7 is 
determined so that the waveform is 
vanishing at 𝑡 < 𝑇 − 𝑇 7 .

𝜏 𝑓 7 + 𝐿 −𝜏′(𝑓 7 ) = 𝑇(7) + 𝑡<,>?@ − 𝑇,
where 𝜏(𝑓) is the time-to-merger, 𝑡<,>?@
is the minimum of coalescence time, 
and 𝐿 ≫ 1 (𝐿 = 5 is sufficient).

The frequency bands can be 
constructed on the fly from the 
minimum chirp mass in the prior range. 27
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Figure: Windowed waveform in the time domain



Speed-up gain
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• The speed-up gain is larger for lower 𝑓EFG, whose duration 𝑇 is longer.

• The speed-up gain is ~50 for 𝑓EFG = 20 Hz (used for LVK) and ~500 for 
𝑓EFG = 5 Hz (appropriate for the third-generation detectors).

Table: Speed-up gains for 1.4Msun-1.4Msun BNS signal for various low-frequency cutoffs 𝑓$%&

LVK

Third-
generation



Short summary of multi-banding
• Multi-banding exploits the chirping nature of signal, whose frequency 

increases with time.

• For BNS signal, the speed-up gain is ~50 for 𝑓EFG = 20 Hz and ~500 for 
𝑓EFG = 5 Hz.

• It is not as fast as FROQ, but it does not require any offline preparations.

29



Summary
• Parameter estimation of compact binary coalescence is computationally costly, 

and can take ~years for BNS signal. 

• We developed two complementary methods to reduce its cost: Focused 
Reduced Order Quadrature (FROQ) and Multi-banding.

• FROQ speeds up PE of BNS signal by a factor of 𝒪 100 − 𝒪 106 , reducing its 
run time to a few tens of minutes.

• Multi-banding is not as fast as FROQ, but it is easy-to-use as it does not 
require any offline preparations. 

30



Extra slides
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Range of 𝜇! − 𝜇"

• Mismatch between trigger and true waveforms

Mismatch ≃
1
2
,Γ!" .𝜓! − 𝜓#! .𝜓" − 𝜓#

" < 0.03

4ΓIJ: Fisher matrix      l𝜓I: True values      𝜓KI: Trigger values

• Statistical errors

,Γ!"(𝜓! − .𝜓!) 𝜓" − .𝜓" < $
%!"#

&

𝑁: 99.9% upper limit of 𝜒+ with 4 d.o.f.      𝜌@2L: Network SNR (12 is applied)

• Prior of masses and spins
32



• X% credible intervals                
should encompass the true values 
for X% of the simulated signals.

• The fraction of signals as                     
a function of credible level should 
be a diagonal line.

• The deviations from a diagonal line 
are consistent with statistical errors 
(p-values are 0.13 ‒ 0.84).

33Figure: P-P plot for FROQ parameter estimation
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Mismatch threshold for broader spin

,Γ!" .𝜓! − 𝜓#! .𝜓" − 𝜓#
" < 63.7

34
0 20 40 60 80 100

°̃(2PN)
ÆØ

≥
√̂Æ ° √Æ

t

¥ ≥
√̂Ø ° √Ø

t

¥
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
is

m
at

ch
µ1

µ2



Basis size for broader spin

• 𝑚#, 𝑚+ < 3𝑀⊙

• Template bank covers 𝜒 < 0.05.

• The spin prior of PE is 𝜒 < 0.7. 35



Injection study
• 07:00:00 UTC ~ 23:39:00 UTC on August 19, 2017

• 2000 injections with the intervals of 30 seconds

• 𝑚#, 𝑚+ < 2𝑀⊙, |𝜒#|, |𝜒+| < 0.05

• Matched filter with GstLAL software [1]

• Detected if Network SNR >12, the second largest SNR > 5

• Low-spin FROQ with LALInference [2] for the detected injections
36[1]: C. Messick et al., Phys. Rev. D 95, 042001 (2017)

[2]: J. Veitch et al., Phys. Rev. D 91, 042003 (2015)



P-P plot (broader spin)
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Search area (broader spin)

3872 deg2 (Bayestar)   ⇨ 13 deg2 (FROQ) at median
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Application to GW170817

• Available in 13 minutes

• Searched area:
10.4 deg2 ⇨ 6.8 deg2

39Orange: Bayestar, green: FROQ, the tick represents the 
location of the host galaxy 



Efficient sampling with 𝜇' − 𝜇&

• The standard parameters used 
for stochastic sampling are 
ℳ,𝑞, 𝜒#, 𝜒+ .

• The likelihood is simpler in the 
𝜇# − 𝜇+ space.

• Stochastic sampling with 
𝜇#, 𝜇+, 𝑞, 𝜒+ is 𝒪 10 − 100

times faster.
E. Lee, SM, and T. Hideyuki in preparation.

• See the Eunsubʼs poster for 
more detail.

40
Figure: Autocorrelation functions for                                                  
the two sets of sampling parameters

Significantly reduced!



Multi-banding

Divide the total frequency range 
into 𝐵 bands using            
overlapping smooth window 
functions 𝑤 7 𝑓 7"/

8'#.

41

Figure: Overlapping smooth windows
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Speed-up gain (including higher-order moments)
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• Smaller speed-up gains for higher-order moments due to the longer time-to-
merger.

• For either case, the speed-up gain is 𝒪(10) for 𝑓EFG = 20 Hz (used for LVK) 
and 𝒪(100) for 𝑓EFG = 5 Hz (appropriate for the third-generation detectors).

Table: Speed-up gains for IMRPhenomD (only 2-2 mode) and IMRPhenomHM (including higher-order moments)



Consistency
• 200 simulated BNS signals

• LIGO-Hanford, LIGO-Livingston, and 
Virgo with their design sensitivities

• Uniformly distributed up to 100Mpc. 
The median SNR is 24.

• The deviations from a diagonal line 
are consistent with statistical errors.
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Figure: P-P plot for multi-banding PE



Likelihood errors for GW190814
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Likelihood errors due to multi-banding are much smaller than statistical errors.


