Rapid Parameter Estimation of Gravitational Waves from Compact Binary Coalescence

Soichiro Morisaki

University of Wisconsin-Milwaukee

Masses in the Stellar Graveyard

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Masses in the Stellar Graveyard

in Solar Masses

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Analysis workflow of compact binary coalescence

Matched filtering

Analysis workflow of compact binary coalescence

(2) Low-latency inference

Produced in ~seconds, but subject to search bias.

Low-latency classification of GW200115

Analysis workflow of compact binary coalescence

(3) Bayesian parameter estimation (**PE**)

• Stochastic sampling of posterior,

 $p(\theta|d) \propto p(\theta)p(d|\theta).$ prior likelihood θ : source parameters (masses, spins, location etc.) d: data

• More accurate than the initial estimates.

Take into account measurement errors.
 Finer resolution of masses and spins
 Include more physics (precession, higher-order moments, tides etc.)

Estimated masses of GW200105 and GW200115 R. Abbott *et al.*, Astrophys. J. Lett. **915** (2021). 6

PE is computationally costly

The median latency in O3 is 59 hours.

PE of binary neutron star (BNS) can take ~years without any approximate methods.

Too slow for follow-up observations of BNS or NSBH.

More detections make it tough.

Figure: Latencies of PE updates in O3

Why is PE costly?

PE computes likelihood more than millions of times.

$$\ln p(d|\theta) = -\frac{1}{2} \left(d - h(\theta), d - h(\theta) \right) = \left(d, h(\theta) \right) - \frac{1}{2} \left(h(\theta), h(\theta) \right) + \text{const.}$$

 $h(\theta)$: template waveform

The inner products involve the frequency-domain waveform $\tilde{h}(f_l; \theta)$.

$$\left(d,h(\theta)\right) = \frac{4}{T} \Re\left[\sum_{l=1}^{\lfloor (N-1)/2 \rfloor} \frac{\tilde{d}_l^* \tilde{h}(f_l;\theta)}{S_l}\right], \qquad \left(h(\theta),h(\theta)\right) = \frac{4}{T} \Re\left[\sum_{l=1}^{\lfloor (N-1)/2 \rfloor} \frac{\left|\tilde{h}(f_l;\theta)\right|^2}{S_l}\right].$$

 S_l : Power spectral density at the *l*-th frequency bin

Typically, the evaluations of $\tilde{h}(f_l; \theta)$ are computationally expensive.

The cost is proportional to the number of frequency samples, which is \sim (duration of signal) \times (frequency range of signal).

→ It is huge for BNS or NSBH signal, which is long and high-frequency.

Two complementary methods to reduce the number of frequency samples where waveforms are evaluated:

1. Focused Reduced Order Quadrature (FROQ)

SM and Vivien Raymond, Phys. Rev. D **102**, 104020 (2020).

2. Multi-banding

SM, arXiv:2104.07813 (2021).

Focused Reduced Order Quadrature (FROQ) SM and Vivien Raymond, Phys. Rev. D 102, 104020 (2020).

2. Multi-banding SM, arXiv:2104.07813 (2021).

Reduced Order Quadrature (ROQ)

Waveforms = vectors in *L*-dimensional space *L*: number of frequency samples

Subspace of waveforms is much lower dimensional.

Approximate waveforms with $K \ll L$ basis vectors $B_k(f_l) (k = 1, 2, ..., K)$:

$$\tilde{h}(f_l) \simeq \sum_{k=1}^K \tilde{h}(F_k) B_k(f_l).$$

The number of waveform evaluations is reduced to $K \rightarrow \sim L/K$ speed up

Speed-up gains of $\mathcal{O}(10^2)$ for BNS, reducing the run time of PE to ~hours.

P. Canizares *et al.*, Phys. Rev. Lett. **114**, 071104 (2015).
R. Smith *et al.*, Phys. Rev. D **94**, 044031 (2016).

Focused Reduced Order Quadrature (FROQ)

Matched filtering

The parameter space can be significantly restricted from the initial estimates.

Waveforms in the restricted space have similar morphologies.

- \rightarrow The subspace of waveforms is extremely low dimensional.
- \rightarrow Much smaller K, and much larger speed-up gains of L/K.

$$\mu^1 - \mu^2$$

Combinations whose initial estimates are reliable:

$$\mu^{1} = 0.974\psi^{0} + 0.209\psi^{2} + 0.0840\psi^{3},$$

$$\mu^{2} = -0.221\psi^{0} + 0.823\psi^{2} + 0.524\psi^{3}.$$

 ψ^0, ψ^2, ψ^3 are the coefficients in the Post-Newtonian expansion of GW's phase depending on masses (m_1, m_2) and spin components in parallel with the orbital angular momentum (χ_1, χ_2) ,

$$\Psi(f) = \psi^0 \left(\frac{f}{f_{\text{ref}}}\right)^{-\frac{5}{3}} + \psi^2 \left(\frac{f}{f_{\text{ref}}}\right)^{-1} + \psi^3 \left(\frac{f}{f_{\text{ref}}}\right)^{-\frac{2}{3}},$$

13

where $f_{\rm ref} = 200$ Hz.

Their range is determined based on search biases and statistical errors.

<u>Basis sizes</u>

Table: Basis sizes and speed-up gains

	Low-spin			High-spin		
$m_{1,\mathrm{t}}=m_{2,\mathrm{t}}$	Prior range	Size	Speedup	Prior range	Size	Speedup
$1M_{\odot}$	$446.10 \le \mu^1 \le 446.38$	21	28000	$445.41 \le \mu^1 \le 446.75$	63	9800
	$-95.0 \le \mu^2 \le -89.9$	<i>4</i> 1	20000	$-98.5 \le \mu^2 \le -86.5$	00	3000
$1 4 M_{\odot}$	$254.79 \le \mu^1 \le 255.09$	21	12000	$254.31 \le \mu^1 \le 255.36$	43	5800
1.41/10	$-60.8 \le \mu^2 \le -55.5$	<i>4</i> 1	12000	$-62.9 \le \mu^2 \le -52.9$	чÜ	
$2M_{\odot}$	$140.49 \le \mu^1 \le 140.76$	21	4600	$140.19 \le \mu^1 \le 141.05$	37	2600
	$-39.9 \le \mu^2 \le -35.5$	<i>4</i> 1	1000	$ -41.4 \le \mu^2 \le -32.6$	01	2000

- Waveform model : TaylorF2
- $m_1, m_2 < 3M_{\odot}$
- Low-spin: $|\chi| < 0.05$, High-spin: $|\chi| < 0.7$
- Basis sizes are $\mathcal{O}(10)$, and speed-up gains are $\mathcal{O}(10^3) \mathcal{O}(10^4)$.

Performance

- Thousands of simulated BNS signals in O2 data.
- The run time is < 16 minutes for 50%, < 29 minutes for 90% of the signals.
- No statistically significant biases from the restriction of parameter space.

Figure: Histogram of PE run times

Searched area

25 deg² (Bayestar) \Rightarrow 19 deg² (FROQ) at median

Short summary of FROQ

- FROQ builds a compact ROQ basis in narrow parameter space, whose range is restricted based on the initial estimates of masses and spins.
- FROQ relies on the two combinations of masses and spins, μ^1 and μ^2 , whose initial estimates are reliable.
- FROQ speeds up PE of BNS signal by a factor of $\mathcal{O}(10^3) \mathcal{O}(10^4)$, reducing its run time to a few tens of minutes.
- FROQ PE is accurate enough to update the initial localization and classification.
- μ^1 and μ^2 can also be used to make stochastic sampling more efficient (See **Eunsub's poster (P09)** for more detail). E. Lee, SM, and T. Hideyuki in preparation. 19

Focused Reduced Order Quadrature (FROQ)
 SM and Vivien Raymond, Phys. Rev. D 102, 104020 (2020).

2. Multi-banding **SM**, arXiv:2104.07813 (2021).

ROQ is not easy-to-use

• Basis vectors $B_k(f_l)$ need to be computed offline with the greedy algorithm,

$$\tilde{h}(f_l) \simeq \sum_{k=1}^K \tilde{h}(F_k) B_k(f_l).$$

- Computationally costly for long waveforms. Numerically very tough for the third-generation detectors (c.f. 1.4Msun-1.4Msun BNS signal is ~1.8 hours from 5 Hz).
- It needs to be done for each new waveform model.

<u>Multi-banding</u>

- The frequency interval is 1/T, where T is the duration of data.
- Frequency increases with time.
 → Time-to-merger decreases with frequency.
- An increasing frequency interval can be used, reducing the number of waveform evaluations at high frequencies.

Figure: gravitational waves from compact binary coalescence

Multi-banding

$$\frac{4}{T}\Re\left[\sum_{l=1}^{\lfloor (N-1)/2 \rfloor} w^{(b)}(f_l) \frac{\tilde{d}_l^* \tilde{h}(f_l)}{S_l}\right] = 2\Delta t \sum_{m=0}^{N-1} D_m h_m^{(b)},$$

where D_m and $h_m^{(b)}$ are the inverse Fourier transform of \tilde{d}_l/S_l and $w^{(b)}(f_l)\tilde{h}(f_l)$.

Multi-banding

25

<u>Multi-banding</u>

$$2\Delta t \sum_{m=N-M^{(b)}}^{N-1} D_m h_m^{(b)} = \frac{4}{T^{(b)}} \Re \left[\sum_l w^{(b)} \left(f_l^{(b)} \right) \tilde{D}_l^{(b)*} \tilde{h} \left(f_l^{(b)} \right) \right],$$

where $T^{(b)} = M^{(b)} \Delta t$ and $f_l^{(b)} = l/T^{(b)}$.
$$T^{(b)} = M^{(b)} \Delta t$$

How to determine frequency bands

Given $T^{(b)}$, the starting frequency $f^{(b)}$ is determined so that the waveform is vanishing at $t < T - T^{(b)}$.

$$\tau(f^{(b)}) + L\sqrt{-\tau'(f^{(b)})} = T^{(b)} + t_{c,\min} - T,$$

where $\tau(f)$ is the time-to-merger, $t_{c,min}$ is the minimum of coalescence time, and $L \gg 1$ (L = 5 is sufficient).

The frequency bands can be constructed on the fly from the minimum chirp mass in the prior range.

Figure: Windowed waveform in the time domain

<u>Speed-up gain</u>

Table: Speed-up gains	for 1.4Msun-1.4Msun BN	NS signal for various	low-frequency cutoffs $f_{ m low}$
-----------------------	------------------------	-----------------------	------------------------------------

$_{ m LVK}$ $_{ m flow}$ (Hz)	T (s)	Number of original samples	Reduction of samples	Speed-up gain
2 0	256	$5.2 imes10^5$	4.5 imes 10	5.1 imes 10
10	1024	$2.1 imes 10^6$	1.2×10^2	1.5×10^2
Third-	8192	$1.7 imes 10^7$	$4.4 imes 10^2$	4.9×10^2

generation

- The speed-up gain is larger for lower f_{low} , whose duration T is longer.
- The speed-up gain is ~50 for $f_{low} = 20$ Hz (used for LVK) and ~500 for $f_{low} = 5$ Hz (appropriate for the third-generation detectors).

<u>Short summary of multi-banding</u>

- Multi-banding exploits the chirping nature of signal, whose frequency increases with time.
- For BNS signal, the speed-up gain is ~ 50 for $f_{low} = 20$ Hz and ~ 500 for $f_{low} = 5$ Hz.
- It is not as fast as FROQ, but it does not require any offline preparations.

- Parameter estimation of compact binary coalescence is computationally costly, and can take ~years for BNS signal.
- We developed two complementary methods to reduce its cost: Focused Reduced Order Quadrature (FROQ) and Multi-banding.
- FROQ speeds up PE of BNS signal by a factor of $\mathcal{O}(10^3) \mathcal{O}(10^4)$, reducing its run time to a few tens of minutes.
- Multi-banding is not as fast as FROQ, but it is easy-to-use as it does not require any offline preparations.

Range of
$$\mu^1 - \mu^2$$

• Mismatch between trigger and true waveforms

Mismatch
$$\simeq \frac{1}{2} \tilde{\Gamma}_{\alpha\beta} (\hat{\psi}^{\alpha} - \psi_t^{\alpha}) (\hat{\psi}^{\beta} - \psi_t^{\beta}) < 0.03$$

 $\tilde{\Gamma}_{\alpha\beta}$: Fisher matrix $\hat{\psi}^{\alpha}$: True values ψ_t^{α} : Trigger values

• Statistical errors

$$\tilde{\Gamma}_{\alpha\beta}(\psi^{\alpha} - \hat{\psi}^{\alpha}) \left(\psi^{\beta} - \hat{\psi}^{\beta}\right) < \left(\frac{N}{\rho_{\text{net}}}\right)^{2}$$

N: 99.9% upper limit of χ^2 with 4 d.o.f. ρ_{net} : Network SNR (12 is applied)

• Prior of masses and spins

<u>Consistency</u>

- X% credible intervals should encompass the true values for X% of the simulated signals.
- The fraction of signals as a function of credible level should be a diagonal line.
- The deviations from a diagonal line are consistent with statistical errors (p-values are 0.13 – 0.84).

Figure: P-P plot for FROQ parameter estimation 33

Mismatch threshold for broader spin

$$\tilde{\Gamma}_{\alpha\beta}(\hat{\psi}^{\alpha}-\psi_{t}^{\alpha})\left(\hat{\psi}^{\beta}-\psi_{t}^{\beta}\right)<63.7$$

34

Basis size for broader spin

High-spi		Broader-spin				
Prior range Si		Speedup	Prior range	Size	Speedup	
$445.41 \le \mu^1 \le 446.75 -98.5 \le \mu^2 \le -86.5$	63	9800	$444.34 \le \mu^1 \le 447.95 -126.9 \le \mu^2 \le -58.8$	153	4100	
$254.31 \le \mu^1 \le 255.36 -62.9 \le \mu^2 \le -52.9$	43	5800	$253.15 \le \mu^1 \le 256.53 -95.0 \le \mu^2 \le -25.8$	129	2000	
$\begin{array}{l} 140.19 \leq \mu^1 \leq 141.05 \\ -41.4 \leq \mu^2 \leq -32.6 \end{array}$	37	2600	$138.94 \le \mu^1 \le 142.14 -64.1 \le \mu^2 \le -14.2$	107	930	

- $m_1, m_2 < 3M_{\odot}$
- Template bank covers $|\chi| < 0.05$.
- The spin prior of PE is $|\chi| < 0.7$.

Injection study

- 07:00:00 UTC ~ 23:39:00 UTC on August 19, 2017
- 2000 injections with the intervals of 30 seconds
- $m_1, m_2 < 2M_{\odot}, |\chi_1|, |\chi_2| < 0.05$
- Matched filter with GstLAL software [1]
- Detected if Network SNR >12, the second largest SNR > 5
- Low-spin FROQ with LALInference [2] for the detected injections

[1]: C. Messick *et al.*, Phys. Rev. D 95, 042001 (2017)
[2]: J. Veitch *et al.*, Phys. Rev. D 91, 042003 (2015)

P-P plot (broader spin)

Search area (broader spin)

72 deg² (Bayestar) \Rightarrow 13 deg² (FROQ) at median

Application to GW170817

• Available in 13 minutes

Searched area:

 $10.4 \text{ deg}^2 \Rightarrow 6.8 \text{ deg}^2$

Orange: Bayestar, green: FROQ, the tick represents the location of the host galaxy

Efficient sampling with $\mu^1 - \mu^2$

- The standard parameters used for stochastic sampling are $(\mathcal{M}, q, \chi_1, \chi_2)$.
- The likelihood is simpler in the $\mu^1 \mu^2$ space.
- Stochastic sampling with $(\mu^1, \mu^2, q, \chi_2)$ is $\mathcal{O}(10 100)$ times faster.
 - E. Lee, SM, and T. Hideyuki in preparation.
- See the Eunsub's poster for more detail.

Figure: Autocorrelation functions for the two sets of sampling parameters

<u>Multi-banding</u>

Divide the total frequency range into *B* bands using overlapping smooth window functions $\{w^{(b)}(f)\}_{b=0}^{B-1}$.

Figure: Overlapping smooth windows

They are constructed so that their sum becomes unity,

$$\sum_{b=0}^{B-1} w^{(b)}(f) = 1.$$

<u>Speed-up gain (including higher-order moments)</u>

Table: Speed-up gains for IMRPhenomD (only 2-2 mode) and IMRPhenomHM (including higher-order moments)

$f_{\rm L}$ (U _q)	T	$K_{ m orig}$	IMRPhe	enomD	IMRPhenomHM		
$J_{\rm low}$ (HZ)	I (S)		$K_{ m orig}/K_{ m MB}$	Speed up	$K_{ m orig}/K_{ m MB}$	Speed up	
20	256	$5.2 imes 10^5$	4.5 imes 10	5.1 imes 10	2.7 imes 10	2.1×10	
10	1024	2.1×10^6	1.2×10^2	$1.5 imes 10^2$	5.7 imes 10	4.6 imes 10	
5	8192	1.7×10^{7}	4.4×10^{2}	4.9×10^2	$1.6 imes 10^2$	1.2×10^2	

- Smaller speed-up gains for higher-order moments due to the longer time-tomerger.
- For either case, the speed-up gain is $\mathcal{O}(10)$ for $f_{\text{low}} = 20$ Hz (used for LVK) and $\mathcal{O}(100)$ for $f_{\text{low}} = 5$ Hz (appropriate for the third-generation detectors).

Consistency

- 200 simulated BNS signals
- LIGO-Hanford, LIGO-Livingston, and Virgo with their design sensitivities
- Uniformly distributed up to 100Mpc. The median SNR is 24.
- The deviations from a diagonal line are consistent with statistical errors.

Likelihood errors for GW190814

Likelihood errors due to multi-banding are much smaller than statistical errors.

